What could we have learnt from the previous flood data to predict losses caused by the 1980, 1986, and 1998 catastrophic floods in Ukrainian Transcarpathian?

Автор(и)

  • Д.В. Стефанишин Доктор технічних наук, провідний науковий співробітник Інституту телекомунікацій і глобального інформаційного простору НАНУ, Київ, Україна https://orcid.org/0000-0002-7620-1613

DOI:

https://doi.org/10.32347/2411-4049.2022.3.81-109

Ключові слова:

комбінований ситуаційно-індуктивний метод прогнозного моделювання, повені, збитки від повені, ризик збитків, максимальні скиди води, прогнозування, часові ряди

Анотація

У цій статті досліджуються деякі аспекти, пов’язані з ретроспективним прогнозуванням підтверджених грошових втрат (збитків) від паводків, спричинених катастрофічними повенями 1980, 1986 та 1998 років у басейні річки Тиса в Закарпатській області України. Дослідження проводилося на основі двох часових рядів – збитків від минулих паводків та максимальних скидів, зафіксованих на гідрологічній станції поблизу села Вилок Виноградівського району. Основною метою дослідження було з'ясувати, чи була реальна можливість заздалегідь передбачити збитки від цих повеней.
При вирішенні поставленого завдання було виявлено та змодельовано залежність ризику втрат внаслідок паводків на Закарпатті від максимальних витрат води р. Тиса, заміряних на гідрологічній станції «Вилок». Прогнозування ґрунтувалося на гіпотезі стаціонарного випадкового процесу для максимальних витрат води, що дозволило використовувати емпіричну функцію розподілу випадкової величини щодо витрат води для оцінки ризику втрат від паводків.
Ретроспективне прогнозування втрат від повеней 1980, 1986, 1998 рр. здійснювалося за допомогою комбінованого ситуаційно-індуктивного методу прогнозного моделювання, який є оригінальною авторською розробкою. Метод стосується прогнозування поведінки складних динамічних систем на основі результатів моніторингу, представлених у вигляді часових рядів, дані яких відображають еволюцію результуючої (залежної) змінної та пояснюючої (незалежної) змінної (провісника). Метод використовує моделі екстраполяційно-регресійного типу. Згідно з цим методом завдання прогнозування виконується в два етапи. На першому етапі реалізується завдання ретроспективного ситуаційного моделювання з метою отримання набору простих регресій (ситуаційних моделей), побудованих за даними вибіркових часових рядів. Ситуаційні моделі визнаються адекватними або релевантними лише в межах певних проміжків часу, визначених як ситуації. На другому етапі на основі узагальнення (за деяким ансамблем) отриманих ретроспективних ситуаційних моделей будуються індуктивні моделі «рівнів», які відображають поведінку контрольованого параметра системи або процесу (результуючої змінної) при кількох фіксованих значеннях провісника в залежності від часу. Індуктивні моделі використовуються для екстраполяційного прогнозування ситуаційних моделей майбутніх періодів (ситуацій).
Всього було виконано три варіанти прогнозування: (1) з урахуванням даних щодо щорічних максимальних витрат води паводків з 1954 по 1979 рр. (до повені 1980 р.); (2) те саме з 1954 по 1985 рік (до повені 1986 року); (3) те саме з 1954 по 1997 рік (до повені 1998 року). Дослідження показало, що була реальна можливість передбачити підтверджені грошові втрати, завдані повенями 1986 та 1998 років (відносні похибки прогнозів 7,2-8,7% і 6,0-12,8% залежно від варіантів).

Посилання

Economic Losses, Poverty and Disasters 1998-2017. (2018). Technical report. CRED, EM-DAT, UNISDR. October 2018. doi: https://doi.org/10.13140/RG.2.2.35610.08643.

Munich Re’s NatCatSERVICE. Risks from floods, storm surges, and flash floods. Underestimated natural hazards. Available from.

Kundzewicz, Z.W. (2004). Floods and flood protection: business-as-usual? The Basis of Civilization - Water Science? Proceedings of the UNESCO/1 AHS/IWI1A symposium held in Rome. December 2003. IAHS Publ. 286.

Doocy, S., Daniels, A., Murray, S. and Kirsch, T.D. (2013). The human impact of floods: a historical review of events 1980-2009 and systematic literature review. PLOS Currents Disasters, 16 April. 1st ed. doi: https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a.

Dobrovičová, S., Dobrovič, R. & Dobrovič, J. (2015). The economic impact of floods and their importance in different regions of the world with emphasis on Europe. Procedia Economics and Finance, 34, 649–655; doi: https://doi.org/10.1016/S2212-5671(15)01681-0.

IPCC, 2012. Glossary of terms. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, 555-564.

Korbutiak, V., Stefanyshyn, D., Lahodniuk, O., Lahodniuk, A. (2020). The combined approach to solving issues of the flood hazard assessment using water gauge records and spatial data. Acta Sci. Pol. Arch., 19 (1), 111–118; doi: https://doi.org/10.22630/ASPA.2020.19.1.12.

Rentschler, J., Salhab, M. (2020). People in Harm’s Way: Flood Exposure and Poverty in 189 Countries. Policy Research Working Paper; No. 9447. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/34655. License: CC BY 3.0 IGO.

Joyce, J., Chang, N. Bin, Harji, R., Ruppert, T. (2018). Coupling infrastructure resilience and flood risk assessment via copulas analyses for a coastal green-grey-blue drainage system under extreme weather events. Environ. Modelling Software. 100, 82–103; https://doi.org/10.1016/j.envsoft.2017.11.008.

Sahani, J., Kumar, P., Debele, S., Spyrou, Ch., Loupis, M., Aragão, L., Porcù, F., Rahman Shah, M.A., and Di Sabatino, S. (2019). Hydro-meteorological risk assessment methods and management by nature-based solutions. Science of The Total Environment, Vol. 696, 133936; https://doi.org/10.1016/j.scitotenv.2019.133936.

Debele, S.E., Kumar, P., Sahani, J., et al. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Env. Research, Vol. 179, Part B, 108799; https://doi.org/10.1016/j.envres.2019.108799.

Kundzewicz, Z.W., Ulbrich, U., Brücher, T. et al. (2005). Summer Floods in Central Europe – Climate Change Track? Natural Hazards. Vol. 36, Issue 1, 165-189; https://doi.org/10.1007/s11069-004-4547-6.

Rufat, S., Tate, E., Burton, Ch. G., and Maroof, A.S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. Int. Journal of Disaster Risk Reduction, 14, 470-486; http://dx.doi.org/10.1016/j.ijdrr.2015.09.013.

Viglione, A., Chirico, G.B., Komma, J., Woods, R., Borga, M., Blöschl, G. (2010). Quantifying space-time dynamics of flood event types. J. Hydrol., Vol. 394, No. 1/2, 213–229; doi: https://doi.org/10.1016/j.hydrol.2010.05.041.

Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., and Merz, B. (2014). On the relationship between hydro-meteorological patterns and flood types. J. Hydrol. 519, 3249–3262; doi: http://doi.org/10.1016/j.jhydrol.2014.09.089.

Mishra, A., Mukherjee, S., Merz, B., Singh, V.P., Wright, D.B., Villarini, G., et al. (2022). An Overview of Flood Concepts, Challenges, and Future Directions. ASCE. J. Hydrol. Eng., 27(6): 03122001; doi: https://doi.org/10.1061/(ASCE)HE.1943-5584.0002164.

De Moel, H., Asselman, N.E.M., and Aerts J.C.J.H. (2012). Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands. Nat. Hazards Earth Syst. Sci., 12, 1045–1058; doi: https://doi.org/10.5194/nhess-12-1045-2012.

Koks, E.E., de Moel, H., Aerts, J.C.J.H., and Bouwer, L.M. (2014). Effect of spatial adaptation measures on flood risk: study of coastal floods in Belgium. Reg. Environ. Change (2014) 14:413–425; doi: https://doi.org/10.1007/s10113-013-0514-7.

Lasage, R., Veldkamp, T.I.E., de Moel, H., Van, T.C., Phi, H.L., Vellinga, P., and Aerts, J.C.J.H. (2014). Assessment of the effectiveness of flood adaptation strategies for HCMC. Nat. Hazards Earth Syst. Sci., 14, 1441–1457; doi: https://doi.org/10.5194/nhess-14-1441-2014.

De Bruijn, K.M., Diermanse, F.L.M., and Beckers, J.V.L. (2014). An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risk in the Netherlands. Nat. Haz. Earth Syst. Sci., 14, 2767–2781; doi: https://doi.org/10.5194/nhess-14-2767-2014.

Hall, J., and Blöschl, G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 22, 3883–3901; DOI: 10.5194/hess-22-3883-2018.

Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., Viglione, A., et al. (2019). Causative classification of river flood events. WIREs. Water, 6(4), e1353. https://doi.org/10.1002/wat2.1353.

Aryal, Y.N., Villarini, G., Zhang, W., and Vecchi, G. A. (2018). Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic oscillation and El Niño-Southern oscillation. J. Hydrol. 559 (Apr): 698–710; https://doi.org/10.1016/j.jhydrol.2018.02.072.

Jung, I.-W., Chang, H., and Moradkhani, H. (2011). Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrol. Earth Syst. Sci., 15, 617–633, 2011; doi: https://doi.org/10.5194/hess-15-617-2011.

Vojinovic, Z., and Abbott, M.B. (2012). Flood Risk and Social Justice: from Quantitative to Qualitative Flood Risk Assessment and Mitigation. IWA Publishing, 563 p.; doi: https://doi.org/10.2166/9781780400822.

Zhou, Y., Shen, D., Huang, N., Guo, Y., Zhang, T., Zhang, Y. (2019). Urban flood risk assessment using storm characteristic parameters sensitive to catchment-specific drainage system. Sci. Total Environ. 659, 1362–1369; https://doi.org/10.1016/j.scitotenv.2019.01.004.

Anquetin, S., Ducrocq, V., Braud, I., and Creutin, J.-D. (2009). Hydrometeorological modelling for Flash Flood areas: the case of the 2002 Gard event in France. J. Flood Risk Management, 2, 101–110; doi: https://doi.org/10.1111/j.1753-318X.2009.01023.x.

Marchi, L., Borga, M., Preciso, E., and Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 394, 118–133.

Alfieri, L., and Thielen, J. (2012). A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl.; doi: https://doi.org/10.1002/met.1328

Amponsah, W., Marchi, L., Zoccatelli, D., et al. (2016). Hydrometeorological characterisation of a flash flood associated with major geomorphic effects: assessment of peak discharge uncertainties and analysis of the runoff response. J. Hydrometeorol. 17, 3063–3077; https://doi.org/10.1175/JHM-D-16-0081.1.

Rinat, Y., Marra, F., Armon, Metzger, M.A., Levi, Y., Khain, P., Vadislavsky, E., Rosensaft, M., and Morin, E. (2021). Hydrometeorological analysis and forecasting of a 3 d

flash-flood-triggering desert rainstorm. Nat. Hazards Earth Syst. Sci., 21, 917–939; https://doi.org/10.5194/nhess-21-917-2021.

Moftakhari, H. R., Salvadori, G., Kouchak, A., Sanders, B.F., and Matthew, R.A. (2017). Compounding effects of sea level rise and fluvial flooding. Proc. Natl. Acad. Sci. 114 (37): 9785–9790; https://doi.org/10.1073/pnas.1620325114.

Couasnon, A., Eilander, D., Muis, S., Veldkamp, T.I.E., Haigh, I.D., Wahl, T., Winsemius, H.C., and Ward, P.J. (2020). Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20 (2): 489–504; https://doi.org/10.5194/nhess-20-489-2020.

Merz, R., Blöschl, G. (2003). Regional flood risk: what are the driving processes? In water resources systems – Hydrological risk, Management and Development. Int. Assoc. Hydrol. Sci. (IAHS) 281, 49–58.

Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T.R., Kriaučiūnienė, J., Kundzewicz, Z.W., Lang, M., et al. (2014). Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772.

Turkington, T., Breinl, K., Ettema, J., Dinand Alkema, D., and Jetten, V. (2016). A new flood type classification method for use in climate change impact studies. Weather Clim. Extremes 14, 1–16; doi: https://doi.org/10.1016/j.wace.2016.10.001.

Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., et al. (2017). Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: model development and its application to 2007 Cyclone Sidr in Bangladesh. J. Adv. Model. Earth Syst. 9, 1847–1862; doi: https://doi.org/10.1002/2017MS000943.

Macdonald, D., Dixon, A., Newell, A., and Hallaways, A. (2012). Groundwater flooding within an urbanised flood plain. Journal of Flood Risk Management 5(1); doi: https://doi.org/10.1111/j.1753-318X.2011.01127.x.

Abboud, J., Ryan, M.C., and Osborn, G.D. (2017). Groundwater Flooding in a River-Connected Alluvial Aquifer. Journal of Flood Risk Management, 11(2):e12334; doi: https://doi.org/10.1111/jfr3.12334.

Mancini, C.P., Lollai, S., Volpi, E., and Fiori, A. (2020). Flood Modeling and Groundwater Flooding in Urbanized Reclamation Areas: The Case of Rome (Italy). Water, 12, 2030; doi: https://doi.org/10.3390/w12072030.

Llewellyn, M. (2006). Floods and Tsunamis. Surgical Clinics of North America, Vol. 86, Issue 3, June 2006, 557–578; https://doi.org/10.1016/j.suc.2006.02.006.

Fread, D.L. (1996). Dam-Breach Floods. In: Singh, V.P. (eds) Hydrology of Disasters. Water Science and Technology Library, Vol. 24. Springer, Dordrecht; https://doi.org/10.1007/978-94-015-8680-1_5.

Veksler, A.B., Ivashintsov, D.A., and Stefanishin, D.V. (2002). Reliability, social and environmental safety of hydraulic structures: risk assessment and decision making. St. Petersburg, VNIIG B.E. Vedeneeva, 591 p. (In Russian) [Векслер, А.Б., Ивашинцов, Д.А., Стефанишин, Д.В. (2002). Надежность, социальная и экологическая безопасность гидротехнических объектов: оценка риска и принятие решений. СПб, ВНИИГ им. Б.Е. Веденеева, 591 с.].

Ponce, V.M., Taher-shamsi, A., and Shetty, A.V. (2003). Dam-Breach Flood Wave Propagation Using Dimensionless Parameters. Journal of Hydraulic Engineering, Vol. 129, Issue 10, 777–782; doi: https://doi.org/10.1061/(ASCE)0733-9429(2003)129:10(777).

Apel, H., Merz, B., and Thieken, A.H. (2009). Influence of dike breaches on flood frequency estimation. Computers & Geosciences, Vol. 35, Issue 5, May, 2009, 907–923; https://doi.org/10.1016/j.cageo.2007.11.003.

Vorogushyn, S., Merz, B., Lindenschmidt, K.‐E., and Apel, H. (2010). A new methodology for flood hazard assessment considering dike breaches. Water Resour. Res., 46, W08541; doi: https://doi.org/10.1029/2009WR008475.

Satofuka, Yo., Mori, T., Mizuyama, T., Ogawa, K., and Kousuke Yoshino, K. (2010). Prediction of Floods Caused by Landslide Dam Collapse. Journal of Disaster Research, Vol.5, No.3, 288–295; doi: https://doi.org/10.2208/prohe.51.901.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., et al. (2015). Numerical modelling of glacial lake outburst floods using physically based dam-breach models. Earth Surf. Dynam., 3, 171–199; doi: https://doi.org/10.5194/esurf-3-171-2015.

Stevaux, J.C., de Azevedo Macedo, H., Assine, M.L., and Silva, A. (2020). Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology, Vol. 350, 106906, doi: https://doi.org/10.1016/j.geomorph.2019.106906.

Miller, R.L. (2022). Nonstationary streamflow effects on backwater flood management of the Atchafalaya Basin, USA. Journal of Environmental Management, Vol. 309, 114726; https://doi.org/10.1016/j.jenvman.2022.114726.

Keaton, J.R. (2019). Review of contemporary terminology for damaging surficial processes – Stream flow, hyperconcentrated sediment flow, debris flow, mud flow, mud flood, mudslide. In 7th Int. Conf. on Debris-Flow Hazards Mitigation. Available from https://mountainscholar.org/bitstream/handle/11124/173147/05-26_Keaton.pdf?sequence= 1&isAllowed=y.

Fallas Salazar, S., and Rojas González, A.M. (2021). Evaluation of Debris Flows for Flood Plain Estimation in a Small Ungauged Tropical Watershed for Hurricane Otto. Hydrology, 8, 122; https://doi.org/10.3390/hydrology8030122/.

Directive 2007/60/EC on the assessment and management of flood risks. (2007). Official Journal of the European Union, L 288/27, 8 p. Available from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0060&from=EN.

Salazar, S., Francés, F., Komma, J., Blume, T., Francke, T., Bronstert, A., and Blöschl, G. (2012). A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat. Hazards Earth Syst. Sci., 12, 3287–3306; doi: https://doi.org/10.5194/nhess-12-3287-2012.

Effectiveness of flood management measures. (2015). Integrated flood management tools series, Issue 21. World Meteorological Organization and the Global Water Partnership, 66 p. Available from https://www.floodmanagement.info/publications/tools.

Hudson, P., Botzen, W.J.W., Kreibich, H., Bubeck, P., and Aerts, J.C.J.H. (2014). Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching Nat. Hazards Earth Syst. Sci., 14, 1731–1747; doi: https://doi.org/10.5194/nhess-14-1731-2014.

Kron, W., and Müller, O. (2019). Efficiency of flood protection measures: selected examples. Water Policy 21(6), 449–467; doi: https://doi.org/10.2166/wp.2019.023.

Tariq, M.A.U.R., Farooq, R., and van de Giesen, N. (2020). A Critical Review of Flood Risk Management and the Selection of Suitable Measures. Appl. Sci., 10, 8752; doi: https://doi.org/10.3390/app10238752.

Machado, M.J., Botero, B.A., López, J., et al. (2015). Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol. Earth Syst. Sci., 19, 2561–2576; doi: https://doi.org/10.5194/hess-19-2561-2015.

Stefanyshyn, D.V. (2018). On the use of the type I Gumbel distribution to assess risks given floods. Mathematical modeling in economy. No.1, 74–83; http://dspace.nbuv.gov.ua/handle/123456789/161991.

England, J.F., Jr., Cohn, T.A., Faber, B.A., Stedinger, J.R., Thomas, W.O., Jr., Veilleux, A.G., Kiang, J.E., and Mason, R.R., Jr. (2018). Guidelines for determining flood flow frequency. Bulletin 17C (ver. 1.1, May 2019): U.S. Geological Survey Techniques and Methods, Book 4, chap. B5, 148 p.; https://doi.org/10.3133/tm4B5.

Plate, E.J. (2009). HESS Opinions “Classification of hydrological models for flood management”. Hydrol. Earth Syst. Sci., 13, 1939–1951; https://doi.org/10.5194/hess-13-1939-2009.

Gül, G.O., Harmancıoğlu, N., and Gül, A. (2010). A combined hydrologic and hydraulic modeling approach for testing. Nat. Hazards, 54, 245–260; doi: https://doi.org/10.1007/s11069-009-9464-2.

Flood Emergency Planning. (2011). Integrated Flood Management Tools Series, Issue 11. World Meteorological Organization and the Global Water Partnership, 38 p. Available from https://www.floodmanagement.info/publications/tools.

Flood Mapping. (2013). Integrated Flood Management Tools Series, Issue 20. World Meteorological Organization and the Global Water Partnership, 88 p. Available from https://www.floodmanagement.info/publications/tools.

Alfieri1, L., Pappenberger, F., and Wetterhall, F. (2014). The extreme runoff index for flood early warning in Europe. Nat. Hazards Earth Syst. Sci., 14, 1505–1515; doi: https://doi.org/10.5194/nhess-14-1505-2014.

Apel, H., Aronica, G. T., Kreibich, H., Thieken, A. H. (2009). Flood risk analyses – how detailed do we need to be? Natural Hazards, 49, 1, 79–98; doi: https://doi.org/10.1007/s11069‐008‐9277‐8.

National Disaster Risk Assessment. Hazard Specific Risk Assessment. (2017). United Nations Office for Disaster Risk Reduction, 100 p. Available from https://www.unisdr.org/files/52828_nationaldisasterriskassessmenthazar%5B1%5D.pdf.

Sahani, J., Kumar, P., Debele, S., Spyrou, C., Loupis, M., Aragão, L., Porcùf, F., Shah, M.A.R., and Di Sabatino, S. (2019). Hydro-meteorological risk assessment methods and management by nature-based solutions. Science of the Total Environment, 696, 133936; doi: https://doi.org/10.1016/j.scitotenv.2019.133936.

Hegger, D.L.T., Driessen, P.P.J., Wiering, M., Van Rijswick, H.F.M.W., Kundzewicz, Z.W., Matczak, P., et al. (2016). Toward more flood resilience: Is a diversification of flood risk management strategies the way forward? Ecology and Society, 21(4):52. https://doi.org/10.5751/ES-08854-210452.

Selecting Measures and Designing Strategies for Integrated Flood Risk Management. The Guidance Document. (2017). World Meteorological Organization and the Global Water Partnership. Policy and Tools Documents Series No.1, version 1.0, 46 p. Available from https://www.floodmanagement.info/publications/guidance.

Verweij, S., Busscher, T., and van den Brink, M. (2021). Effective policy instrument mixes for implementing integrated flood risk management: An analysis of the ‘Room for the River’ program. Environmental Science and Policy 116, 204–212; https://doi.org/10.1016/j.envsci.2020.12.003.

Natural and Nature-based Flood management: A green guide. (2016). Editors: Benit, H., and Thomas, M. World Wildlife Fund, Washington, DC, 222 p. Available from https://files.worldwildlife.org/wwfcmsprod/files/Publication/file/538k358t40_WWF_Flood_Green_Guide_FINAL.pdf.

Te Linde, A.H., Moors, E.J., Droogers, P., Bisselink, B., Becker, G., et al. (2012). ACER: developing Adaptive Capacity to Extreme events in the Rhine basin. KvR 046/12. National Research Programme Climate changes Spatial Planning, Amsterdam, 52 p.

Richert, C., Erdlenbruch, K., and Grelot, F. (2019). The impact of flood management policies on individual adaptation actions: Insights from a French case study. Ecological Economics, Elsevier, 165, pp.106387. https://doi.org/10.1016/j.ecolecon.2019.106387, halshs-02189117.

Glaus, A., Mosimann, M., Röthlisberger, V., and Ingold, K. (2020). How flood risks shape policies: flood exposure and risk perception in Swiss municipalities. Regional Environmental Change 20, 120; https://doi.org/10.1007/s10113-020-01705-7.

Klijn, F., Marchand, M., Meijer, K., van der Most, H., and Stuparu, D. (2021). Tailored flood risk management: Accounting for socio-economic and cultural differences when designing strategies. Water Security, 12, [100084]; doi: https://doi.org/10.1016/j.wasec.2021.100084.

Miguez, M.G., and Veról, A.P. (2017). A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design. Environment and Planning B: Urb. Analytics and City Science, Vol. 44(5) 925–946; doi: https://doi.org/10.1177/0265813516655799.

Ventimiglia, U., Candela, A., and Aronica, G.T. (2020). A Cost Efficiency Analysis of Flood Proofing Measures for Hydraulic Risk Mitigation in an Urbanized Riverine Area. Water, 12, 2395; doi: https://doi.org/10.3390/w12092395.

Igigabel, M., Diab, Y., and Yates, M. (2022). Exploring Methodological Approaches for Strengthening the Resilience of Coastal Flood Protection System. Front. Earth Sci. 9:756936; doi: https://doi.org/10.3389/feart.2021.756936.

Associated Programme on Flood Management. Flood Management Tools Series. WMO. Available from https://www.floodmanagement.info/category/apfm-tools-series/.

Action Programme for Sustainable Flood Protection in the Danube River Basin. (2004). Int. Commission for the Protection of the Danube River (ICPDR), Doc. IC/082, Vienna, Austria, 28 p. Available from https://www.icpdr.org/main/sites/default/files/ICPDR_Flood.

Danube flood risk management plan. (2021). International Commission for the Protection of the Danube River (ICPDR). Vienna, Austria, 174 p. Available from https://www.icpdr.org/main/sites/default/files/nodes/documents/danube_flood_risk_managament_plan_-_update_2021_low_resolution.pdf.

Sub-Basin Level Flood Action Plan for Tisza River Basin. (2009). Int. Commission for the Protection of the Danube River (ICPDR), Flood Protection Expert Group, 52 p. Available from https://www.icpdr.org/main/sites/default/files/FAP09_Tisza.pdf.

Internationally Coordinated Flood Risk Management Plan for the International River Basin District of the Rhine, Part A. (2015). Internationale Kommission zum Schutz des Rheins, 46 p. Available from https://www.iksr.org/fileadmin/user_upload/Dokumente_en/ Brochures/FRMP_2015.pdf.

Flood Risk Management in Austria. Objectives – Measures – Good practice. (2018). Federal Ministry Republic of Austria, Vienna, 60 p. Available from https://rainman-toolbox.eu/wp-content/uploads/2021/02/AT-HWRM_%C3%96_2018_Barrierefrei_EN.pdf.

Kent Local Flood Risk Management Strategy 2017-2023. Kent County Council, UK, 36 p. Available https://www.kent.gov.uk/__data/assets/pdf_file/0010/79453/Local-Flood-Risk-Management-Strategy-2017-2023.pdf.

Mudelsee, M., Michael Börngen, M., Gerd Tetzlaff, G., and Uwe Grünewald, U. (2003). No upward trends in the occurrence of extreme floods in central Europe. Nature, Letter to Nature, Vol. 425, 166–169.

Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S.N. (2018). Trends in flood losses in Europe over the past 150 years. Nature communications, 9:1985; doi: https://doi.org/10.1038/s41467-018-04253-1.

Ukraine – Vulnerability. Climate Change Knowledge Portal. Available from https://climateknowledgeportal.worldbank.org/country/ukraine/vulnerability.

Flood protection of territories. United Nations Development Programme. UNDP in Ukraine. Available from https://www1.undp.org/content/dam/ukraine/docs/EE/Flood.

Climate Landscape Analysis for Children (CLAC) in Ukraine. (2021). UNICEF, Hydroconseil, 156 p. Available from https://www.unicef.org/ukraine/media/15766.

Didovets, Iu., Krysanova, V., Bürger, G., Snizhko, S., Balabukh, V., and Bronstert, A. (2019). Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studies, 22,100590; doi: https://doi.org/10.1016/j.ejrh.2019.01.002.

Shulyarenko, A., Yatsyuk, M., Shularenko, I. Causes and peculiarities of recent floods on the Dniester River. Flood Issues in Contemporary Water Management. Ed. by J. Marsalek et al. NATO Science Series. 2. Environmental Security, Vol. 71. Ptoc. of the NATO Advanced Research Workshop on Coping with Flesh Floods: Lessons Learned from Recent Experience, 95–100.

Susidko, M.M., and Lukyanets, O.I. (2004). Zoning of the territory of Ukraine according to the degree of hydrological danger. UkrNDGMI, Issue 253, 196–204. (In Ukrainian) [Сусідко М.М., Лук’янець, О.І. (2004). Районування території України за ступенем гідрологічної небезпеки. УкрНДГМІ, Вип. 253, 196–204].

Stoyko, S.M. (2002). The causes of catastrophic floods in the Transcarpathian region and the system of ecological prophylactic measures for their prevention. TISCIA monograph series, 6, 17–28.

Hall, J., Arheimer, B., Aronica, G.T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Burlando, P., Castellarin, A., Chirico, G.B., Claps, P., Fiala, K., Gaál, L., et al. (2015). A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proc. IAHS, 370, 89–95; doi: https://doi.org/10.5194/piahs-370-89-2015.

Jongman, B., Kreibich, H., Apel, H., Barredo, J.I., Bates, P.D., Feyen, L., Gericke, A., et al. (2012). Comparative flood damage model assessment: towards a European approach. Nat. Hazards Earth Syst. Sci., 12, 3733–3752; doi: https://doi.org/10.5194/nhess-12-3733-2012.

Conducting Flood Loss Assessments. (2013). Integrated Flood Management Tools Series, No. 2. World Meteorological Organization and the Global Water Partnership, 48 p. Available from https://www.floodmanagement.info/publications/tools.

Kirilyuk, M.I. (2001). Regime of formation of historical floods in the Ukrainian Carpathians. Environmental aspects of the formation of small rivers (problem analysis). Hydrology, hydrochemistry and hydroecology. [Resp. ed. V.K., Khilchevsky]. Kyiv, Nika-Center, Vol. 2, 146–156. (In Ukrainian) [Кирилюк, М.І. (2001). Режим формування історичних паводків в Українських Карпатах. Екологічні аспекти руслоформування малих річок (аналіз проблеми). Гідрологія, гідрохімія і гідроекологія. [Відп. ред. В.К. Хільчевський]. Київ, Ніка-Центр, Т. 2, 146-156].

Flood Prevention in Ukraine – NATO. NATO-Ukraine Relations, 8 p. Available from https://www.nato.int/nato_static/assets/pdf/pdf_publications/20120116_flood_ukraine_eng.pdf.

Central Geophysical Observatory named after Boris Sreznevsky. Available from http://cgo-sreznevskyi.kyiv.ua/index.php?lang=en&dv=main.

Altman, M. (2020). A holistic approach to empirical analysis: The insignificance of P, hypothesis testing and statistical significance. In D.H. Bailey, N.S. Borwein, R.P. Brent, R.S. Burachik, J.H. Osborn, B. Sims, and Q.J. Zhu (Eds.). From Analysis to Visualization: A Celebration of the Life and Legacy of J.M. Borwein, Callaghan, Australia, September 2017. Springer Verlag. Vol. 313, 233–253; https://doi.org/10.1007/978-3-030-36568-4_16.

Hamilton, J.D. (1994). Time series analysis. Princeton University Press: Princeton, New Jersey, 782 p.

Berthold, M.R., Borgelt, Ch., Höppner, F., and Klawonn, F. (2010). Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data. London: Springer-Verlag, 407 p.; doi: https://doi.org/10.1007/978-1-84882-260-3.

Combs, J.P., and Onwuegbuzie, A.J. (2010). Describing and illustrating data analysis in mixed research. International Journal of Education, Vol. 2, No. 2: E13; https://hdl.handle.net/20.500.11875/2951.

Kuhn, M., and Johnson, K. (2013). Applied Predictive Modeling. Springer Science+Business Media: New York, 600 p.

Geisser, S. (2016). Predictive Inference: An Introduction. NY, Chapman & Hall, 264 p.

De Rocquigny, E. (2012). Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods. Wiley series in probability and statistics, 484 p.

Kochenderfer, M.J. (2015). Decision-making under uncertainty. Theory and Application. With Ch. Amato, G. Chowdhary, J.P. How, H.J. Davison Reynolds, J.R. Thornton, P.A. Torres-Carrasquillo, N. Kemal Üre, and J. Vian. Massachusetts Institute of Technology, The MIT Press, Cambridge, Massachusetts, London, England, 323 p.

Trofymchuk, O.M., Bidiuk, P.I., Prosiankina-Zharova, T.I., Terentiev, O.M. (2019). Decision support systems for modelling, forecasting and risk estimation. Riga: LAP LAMBERT Academic Publishing, 176 p.

Stefanyshyn, D.V. (2016). Situational and inductive modelling in problems of extrapolation forecasting based on monitoring data. System Research and Information Technologies, №4, 35–45; doi: https://doi.org/10.20535/SRIT.2308-8893.2016.4.04. (In Ukrainian) [Стефанишин, Д.В. (2016). Ситуаційно-індуктивне моделювання в задачах екстраполяційного прогнозування за даними моніторингу. Системні дослідження та інформаційні технології, №4, 35–45].

Stefanyshyn, D.V. (2019). An approach to predicting based on monitoring data by means of combined situational-inductive modelling (the main idea and expected results). Mathematical modelling in economics, №4 (17), 69–81; http://dspace.nbuv.gov.ua/handle/ 123456789/168506.

Stefanyshyn, D. (2020). On One Approach to Predictive Modeling Based on Monitoring Data. Modeling, Control and Information Technologies: Proc. of Int. Scientific and Practical Conf., (4), 104–107; https://doi.org/10.31713/MCIT.2020.21.

Stefanyshyn, D.V., Korbutiak, V.M., and Stefanyshyna-Gavryliuk, Y.D. (2019). Situational predictive modelling of the flood hazard in the Dniester river valley near the town of Halych. Environmental safety and natural resources, Issue 1 (29), 16–27; doi: https://doi.org/10.32347/2411-4049.2019.1.16-27.

Demianiuk, A., and Stefanyshyn, D. (2020). The prognostic modelling of piezometric levels based on seepage monitoring in earthen dams. MATEC Web of Conferences 322, 01047, MATBUD’2020; https://doi.org/10.1051/matecconf/202032201047.

McCarthy, J. (1963). Situations, actions, and causal laws. Memo 2: Stanford University Artificial Intelligence Project, 11 p. Available from: http://www.dtic. mil/dtic/tr/fulltext/u2/785031.pdf.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, 424 p.

Russell, S.J., and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. 3rd ed. Pearson Education, Inc.: Upper Saddle River, New Jersey, 1132 p.

Nash, J.E., and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I – A discussion of principles, Journal of Hydrology, 10 (3), 282–290; doi: https://doi.org/10.1016/0022-1694(70)90255-6.

Ritter, A., Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480 (1), 33–45; doi: https://doi.org/10.1016/j.jhydrol.2012.12.004.

##submission.downloads##

Опубліковано

2022-11-21

Як цитувати

Стефанишин, Д. (2022). What could we have learnt from the previous flood data to predict losses caused by the 1980, 1986, and 1998 catastrophic floods in Ukrainian Transcarpathian?. Екологічна безпека та природокористування, 43(3), 81–109. https://doi.org/10.32347/2411-4049.2022.3.81-109

Номер

Розділ

Інформаційні системи та математичне моделювання