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WHAT COULD WE HAVE LEARNT FROM THE PREVIOUS FLOOD 

DATA TO PREDICT LOSSES CAUSED BY THE 1980, 1986, AND 1998 

CATASTROPHIC FLOODS IN UKRAINIAN TRANSCARPATHIAN? 

 
Abstract. This paper explores some aspects relating to retrospective predicting the 

confirmed monetary losses caused by the disastrous floods of 1980, 1986, and 1998 

in the Tisza River basin within the Transcarpathian region of Ukraine. The research 

was based on two time series – the losses because of past floods and the maxima water 

discharges gauged at the hydrological station near the village of Vylok, Vynohradiv 

district. The main aim of the research was to make out whether it had been the 

possibility to predict the losses due to those floods in advance. 

In solving the task, there was revealed and modelled the dependence of the risk of 

losses due to the floods in Transcarpathia on the maximum water discharges of the 

Tisza River gauged at the “Vylok” hydrological station. Predicting was based on the 

hypothesis of the stationary random process for maximum water discharges, which 

allowed using an empirical distribution function of a random variable regarding flood 

water discharges assessing the risk of flood losses. 

Retrospective predicting of the losses caused by the floods of 1980, 1986, and 1998 

was carried out by means of a combined situational-inductive predictive modelling 

method (CSIPMM), being an original author’s development. The method relates to 

predicting the behaviour of complex dynamic systems based on monitoring findings 

presented as time series data reflecting evolutions of a resulting (dependent) variable 

and an explaining (independent) variable (predictor). The method uses extrapolation-

regression type models. According to this method, the prediction task is performed in 

two stages. The first stage realises the retrospective situational modelling task aiming 

to obtain a set of simple regressions (situational models) built on data of sample time 

series. The situational models are accepted to be adequate or relevant ones only within 

certain periods of time determined as situations. In the second stage, based on the 

generalization (on an ensemble) of the obtained retrospective situational models, 

inductive “levels” models are built, which reflect the behaviour of a controlled 

parameter of the system or process (a resulting variable) at several fixed values of a 

predictor in time. The inductive models are used in extrapolative predicting situational 

models belonging to future periods (situations). 

In total, three predictions were made: (1) taking into account the annual maximum 

flood discharges from 1954 to 1979 (before the flood of 1980); (2) the same from 
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1954 to 1985 (before the flood of 1986); (3) the same from 1954 to 1997 (before the 

flood of 1998). The study found that there had been a possibility to predict the 

confirmed monetary losses inflicted by the flood of 1986 and 1998 (relative 

predicting errors of 7.2-8.7% and 6.0-12.8% depending on the prediction options). 

Keywords: combined situational-inductive predictive modelling method; floods; 

flood losses; risk of losses; maxima water discharges; prediction; time series  
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1. Introduction 

 

Floods are considered one of the key natural risk factors for human life and activity. 

Each year, they challenge people because of damage to the infrastructure, resources, 

economy, losses of personal property and crops, and threats to human health and life. 

In terms of the number of catastrophic events that occurred during 1998-2017 in the 

world, floods outweigh any other natural disasters, including storms, earthquakes, 

heatwaves, landslides, droughts, forest fires, volcanoes, and more. The number of 

disastrous floods in the world in that period exceeded 3,000 (3,148 or 43.4% of all 

loss-related natural catastrophes), and the number of people affected per them in 

1998-2017 was near 2.0 billion (45% of all injured through natural disasters) [1]. 

Overall worldwide losses caused by flood events 1980-2019 reached US$ 1,092bn, 

and only 12% of these losses were insured [2]. The number of worldwide deaths 

because of floods in 1998-2017 exceeded 142,000 (11% of all-natural disasters) [1]. 

According to the Red Cross for the period 1971-1995 the flood events have killed 

annually on average more than 12,700 people worldwide, affected 60 million others, 

and caused 3.2 million people to become homeless [3]. Generally, according to 

estimates [4], floods were responsible for about 6.8 million deaths in the 20th 

century. In turn, annual economic worldwide losses from floods have already 

reached US$ hundreds of millions [5]. Since 1990, there have been over 30 floods, 

in each of which either the material losses exceeded one billion USD, or the number 

of fatalities was greater than 1,000, or both [5]. 

Floods are specific natural disasters. They occur because of water overloading 

landscapes as a result of “the overflowing of the normal confines of a stream or other 

body of water, or the accumulation of water over areas that are not normally 

submerged” [6]. However, in addition, floods happen when areas used by humans 

are flooded and losses occur. The problem is that, these landscapes (valleys of rivers, 

sea coastal areas, lakeshores, etc.) have been considered traditionally by humans as 

an especially priced land resource for settlement, urbanization, and using in 

economic activity. Properly, human settlements were formed historically on lands 

surrounding water bodies [7]. In total, nowadays, about 1.47 billion people, or 19% 

of the world population, live in flood-prone locations, whereas their area is only 

about 3 million km2 [8]. Moreover, people have challenged floods too. For centuries, 

people have managed flood risks by using specialised infrastructures, such as dams, 

river dykes and levees, dunes, drainage systems, and others [9, 10], as well as 

applying so-called nature-based solutions mitigating floods [11]. This may be 

explained not only by the increase in the general deficit of land resources in the 

world, in particular, due to declining soil fertility in large areas of the globe, 

increasing soil erosion processes of various etiologies, etc. [12]. The unique 

combination of land and water resources gives special value to flood-prone areas. 

Therefore, floods are happening and intensifying through the accelerated 
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urbanization of landscapes prone to be submerged by floods, despite people fearing 

floods [13], albeit accepting flood risk, doing it consciously because intending 

benefits of using valuable land resources. 

Floods can belong to various event types; they can have various origins, causes, 

triggers and driving mechanisms, space-time dynamics, trends, etc. [11, 14-16]. For 

example, in terms of flood-prone area location, they can be broadly categorized as 

coastal floods, inland floods, and compound floods [16]. Coastal floods [16-19] arise 

along the coasts of oceans, seas, lakes, reservoirs, and in river deltas [20]. They are 

caused by (a combination of) tidal waves, storm surges, heavy rainfall, and strong 

onshore winds [11, 14-16]. Inland floods can be categorized into riverine floods, urban 

floods, and so-called flash floods [11, 14-16]. Riverine (river or fluvial) floods occur 

within fluvial (river) catchments [14, 15, 21, 22]. They can be caused by excessive 

rain, often from oceanic storm systems such as tropical cyclones [23], as well as 

because of rapid snow-melting and heavy rainfall supplemented by snowmelt. Urban 

(or pluvial) floods come about within urban settlements due to heavy rainfall or rapid 

snow melting combined with poor urban planning and the insufficient capacity of the 

drainage systems to control inundation [11, 16, 24-26]. Flash floods are associated 

with high and steep topographic relief, high magnitude and short duration precipitation 

and rapid concentration of streamflow in channel networks [27-31]. Finally, 

compound floods, according to [16], occur within coastal areas and can have attributes 

of different floods: coastal, riverine, urban, flash ones. They occur due to the 

interaction between physical drivers from multiple sources including terrain features, 

hydraulic, hydrological, and meteorological processes [32, 33]. Totally, anthropogenic 

warming and climate change, sea level rise, and increased impervious surface area due 

to urbanization have led to a significant increase in compound flooding over the last 

century, especially in major coastal cities [16, 32, 33]. 

Flooding origins depend on the water source and on the reasons and processes 

causing the water level to rise including spatial patterns and characteristics of flood 

seasonality (warm or cold periods etc.) [22, 34-36]. In particular, in terms of origin 

and drivers, riverine floods can be triggered and developed by hydrometeorological 

conditions through precipitation, temperature, evaporation, snow accumulating and 

melting processes, and high soil moisture [11, 16, 21, 22, 35, 36]; coastal floods –  

by high tides, combined with low atmospheric pressures and strong winds inducing 

a storm surging [16-19, 37]. There are also many unusual flood cases [2], including 

groundwater flooding caused by high seepage through permeable, river-connected 

alluvial aquifers [38-40], tsunamis flooding [41], floods because of dam disasters 

[42-44], dike and levee breaches [45, 46], floods caused by landslide dam collapses 

[47] and glacial lake outburst floods [48], backwater floods [49, 50], debris flows 

and mudflows floods [51, 52], etc. 

Floods challenge often people harmfully, but flooding is regarded as a natural 

hazard against which precautionary measures are most effective compared with other 

natural hazards [2, 9-11]. The best world and European practices on flood 

prevention, protection and mitigation stimulated the Directive 2007/60/EC [53] 

being developed, which alleges: “Floods are natural phenomena which cannot be 

prevented. However, some human activities (such as increasing human settlements 

and economic assets in floodplains and the reduction of the natural water retention 

by land use) and climate change contribute to an increase in the likelihood and 

adverse impacts of flood events”. It signifies that flooding hazard may be managed. 

Numerous data indicate the efficiency of different flood control measures [54-58]. 
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As well, special scientific studies promote to their global implementation, in 

particular, due to more reliable flood forecasting [59-61], hydrological and hydraulic 

modelling for flood management [62, 63], as well as flood emergency planning, 

flood mapping, and resolving flood early warning issues [64-66], because of more 

detail flood risk analysis and assessing [67-69], diversification of flood risk 

management strategies [70] and implementing integrated flood risk management 

[71, 72] including nature-based solutions [11, 69, 73], accounting for local socio-

economic and cultural differences when designing flood risk strategies [74-78], as 

well as supporting decision making in flood-prone zones [79, 80] and exploring 

methodological approaches for strengthening the resilience of flood protection 

systems [81], etc. As well as, different practical tools and guidance on flood 

management issues have been developing. For example, promoting the concept of 

Integrated Flood Management (IFM) as a new approach to flood management and 

providing guidance and advisory materials to realise it, the World Meteorological 

Organization (WMO) and the Global Water Partnership (GWP) have developed 

Integrated Flood Management Tools Series within the Associated Programme on 

Flood Management [82]. We have mentioned some of the tools [64, 65, 71]. Totally, 

the tools [82] cover majority of flood management issues.  

In addition, flood risk management programs and plans within selected river 

basins are being developed and kept up to date, internationally, nationally, and 

locally. In Europe, these are, for example, the Flood Action Programme and Flood 

Risk Management Plan for the Danube River Basin [83, 84], Sub-Basin Level Flood 

Action Plan for the Tisza River Basin [85], Internationally Coordinated Flood Risk 

Management Plan for the International River Basin District of the Rhine [86], Flood 

Risk Management in Austria [87], the Kent Local Flood Risk Management Strategy 

[88]. As a result, in Europe, the overall trend in losses (after adjustment for increases 

in values) has fallen – despite repeated severe floods, such as those in 2002 and 2013 

[2, 89, 90]. There are likewise indications in North America and China that 

protective measures have reduced adjusted losses [2]. 

Ukraine also suffers from floods in a harmful way. Among natural disasters, 

floods are the most common in terms of frequency, area of distribution, and losses 

in the country [91]. The area of lands affected by floods in Ukraine is almost 

165,000 km2 (more than 27 per cent of the country’s territory), and about a third of 

Ukraine’s population lives in the flood-prone areas [92, 93]. The most threatening 

flood types in Ukraine are riverine floods [92]. However, increasingly, flash and 

urban floods occur as well, especially regionally, due to climate change, high-

intensity land use, and urbanization [94, 95]. The brief characteristic of disastrous 

floods in the most flood-prone country’s regions is shown in Table 1. 

Especially often disastrous floods occur in the western regions of the country, on 

the Carpathian rivers [91-97]. Catastrophic floods in the Ukrainian Carpathians are 

an inherent element of the hydrological regime of local rivers [97]. They can cover 

large areas and inflict large losses. In general, the territory of the Ukrainian 

Carpathians (Tisza, Dniester, Prut, and Siret basins) is one of the most flood-prone 

regions in Europe and the world [96]. 

This article deals with flooding in Ukrainian Transcarpathia. In Ukraine, the 

Transcarpathian region seems to be characterized by the highest risk of catastrophic 

floods [85, 96, 97]. There have been at least 26 of them since 1779, including about 

17 in the 20th century. In particular, since 1970, the most devastating floods in 

Transcarpathia have been marked in 1970, 1978, 1980, 1986, and 1998. In general, 
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the flood load in the Transcarpathian region within the Upper Tisza basin is 

estimated to be 2-3 times higher compared to the adjacent areas of the Tisza basin 

belonging to neighboring countries: Romania, Hungary, and Slovakia [85]. 
 

Table 1 – The brief characteristic of disastrous floods in Ukraine [96] 
 

Regions River basins Features of floods 

Recurrence  

of floods 

(years) 

Maximum runoff modules  

of 1% exceedance 

probability (m3/s · km2) 

Trans-

carpathia  
Tysza basin 

Spring, autumn-

winter thaw-rainy 

floods; summer  

rainy floods 

3-7 

2.0-2.5 from an area of 

100-200 km2;  

1.0-2.0 from an area of  

250-400 km2 

Pry-

karpattia  

Right bank of 

Dniester; Prut  

and Siret basins 

Spring thaw-rainy 

floods; summer 

rainy floods.  

Summer floods 

exceed spring ones 

3-7 

2.5-3.2 from an area of 

100-200 km2;  

1.0-2.2 from an area of 

200-500 km2 

Polissya, 

Podillya 

Right bank of 

Pripyat; Western 

Bug basin; left 

bank of Dniester 

Spring thaw-rainy 

floods; summer 

rainy floods. 

Summer floods are 

near spring ones 

7-14 
0.2-0.6 from an area of 

400-600 km2 

 

The aim of the article was to explore whether it had been the realistic possibility 

to predict confirmed monetary losses caused by the floods of 1980, 1986, and 1998 

in the Transcarpathian region based on available monitoring data, in particular, 

regarding losses through previous floods, as well as of maxima water discharges 

gauged at the hydrological station (HS) near the village of Vylok, Vynohradiv 

district. It should be noted the proper organization of flood monitoring [98] with a 

comprehensive assessment of flood losses [99, 100] has been considered an 

important component of modern, holistic flood management strategies [11, 70-72, 

75-81]. In turn, predicting possible flood losses across monitoring data is expected 

to contribute to effective decision-making within these strategies in order to prevent 

and minimise the losses in future.   
 

2. Case study 

 

The Tisza River Basin is the largest sub-basin in the Danube River Basin, covering 

157,186 km2 (19.5%) of the Danube Basin [85]. The drainage area of the Ukrainian 

part of the Tisza catchment is 9,530 km2 [94] (about 6% of the Tisza basin). It is the 

upper, mostly right bank part of the Tisza basin (Fig. 1), which is totally located 

within one Ukrainian administrative unit – the Transcarpathia region. 

The hydro-net in Transcarpathia includes 9,426 rivers and streams with a total 

length of 19,793 km long [85, 97]. Of these, 153 rivers have an overall length of 

3,555 km, and four of them – Tisza, Borzhava, Latorica, and Uzh – are each over 

100 km long [85]. The average river network density is 1.7 km/km2, which is the 

highest density of rivers in Ukraine [85, 97]. About 80% of the Transcarpathia area 

is mountainous terrain and 20% is flatlands. The altitude of the Upper Tisza 

catchment ranges between 90-95 m above sea level (a.s.l.) at the outlets and 

2,100 m a.s.l. in the headwaters. The percentage of area with an elevation above 

600 m a.s.l. is over 70% [94]. The steepness of the mountains and the impermeability 
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of the underlying bedrock contribute to high surface runoff rates. On contrary, in the 

flatter parts of the region (Transcarpathian Lowland connecting Ukraine with 

Hungary and Slovakia), the land is so flat that dense networks of drainage ditches 

are needed to drain shallow water after floods [85]. Generally, much of the 

Transcarpathia population of approximately 1.2 million lives in flood-prone areas, 

in particular, in the flatter parts of the region. 
 

 
 

Fig. 1. Map-scheme of the Ukrainian part of the Tisza River basin (taken from [85]) 

 

The hydrological regime of the Tisza catchment is snow-melting, rainfall-driven, 

and combined thaw-rainy [94, 96]. Most floods occur in autumn-winter and spring 

(cold) seasons (in recent years the majority of floods occurred in November-

December and spring months) and are generated by a combination of rapid increase 

in the air temperature, causing snow melt, and heavy rainy or snow-rainy 

precipitation events [94]. In particular, catastrophic floods in Transcarpathia – in 

cold periods (November-May) – occurred in 1957, 1970, 1978, 1986, and 1998. 

Among disastrous floods, which occurred in summer, it should be noted probably 

one, the unique destructive flood of 1980 (late July) [101]. Generally, it should be 

noted that the Carpathians are situated in the semi-humid and humid climatic zone. 

In Chop (102 m a.s.l.), it falls 700 mm of vertical precipitation per year, at the 

meteorological station Ruska Mokra (640 m a.s.l.) in Gorgan Mountains it reaches 

1600 mm. To this quantity it may be also added about 200 mm of horizontal 

precipitation from moisture condensation of fog and hoar-frost in the forests [97]. 

Often heavy rainfall cover the entire region at the same time, and in just one-three 

days an amount of precipitation can reach 2-3 monthly norms – as much as 150-

250 mm and 34 mm in just two hours [102]. Although, hydrometeorological 

phenomena last usually for 12-24 hours only, but due to the characters of catchment 

surface they may trigger floods repeating 3-8 times per year [96].  

 

3. Materials and input data. Data analysis and making assumptions 

 

When researching, the different available information on floods in the 

Transcarpathia region was used. First of all, those were available historical data on 

the relatively recent floods that occurred in the region from 1955 to 1998. It was 

reviewed and analysed a wide range of different facts relating to those floods, 

including data on their drivers and consequences (losses). The basic information on 

those floods was obtained from scientific publications and regulatory documents, 
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which are presented in the references [91-97, 101, 102]. As well, it would like to 

apologize to authors whose works were not mentioned in the references. Useful 

information, after its proper verification, was obtained also due to the Internet, from 

relevant information and analytical notes and reviews, etc. Hydrological data 

concerning the maxima water discharges of the Tisza River at the hydrological 

(gauging) station (HS) “Vylok” were taken from the Hydrological Yearbooks of the 

Central Geophysical Observatory named after Boris Sreznevsky [103]. As well as, 

Table 2 shows the available data on confirmed monetary losses due to floods 

occurred in the Transcarpathian region in 1955-1998. 
 

Table 2 – Summarised data on floods occurred in the Transcarpathian region from 

1955 to 1998: Q is maxima water discharges of the Tisza River gauged at the 

HS “Vylok”, and L is confirmed monetary losses due to floods  
 

Years Q (m3/s) L (UAH millions)  Years Q (m3/s) L (UAH millions) 

1955 2 742 43.7 1973 783 23.5 

1957 2 410 21.3 1974 2 560 33.6 

1958 2 600 9.8 1975 1 500 87.9 

1965 2 070 14.2 1976 1 350 60.1 

1967 1 860 10.9 1977 1 860 85.2 

1968 2 930 10.4 1978 3 060 115.8 

1969 1 420 34.4 1979 2 720 64.4 

1970 3 650 237.0 1980 2 070 325.0 

1971 1 310 35.5 1986 2 050 127.9 

1972 1 790 24.0 1998 3 150 810.0 

 

Input data regarding the monetary losses by UAH, which are shown in Table 2, 

were calculated in prices for 2010. The hydrological time series includes also the 

years 1954, 1956, 1959-1964, 1966, 1981-1985, 1987-1997, and 1999.  

Fig. 2 shows the visualization of the time series presenting the monitoring data:  

(A) for the maxima water discharges gauged at the HS “Vylok” from 1954 to 1999; 

(B) for the confirmed monetary losses due to floods in the Transcarpathian region 

from1955 to 1998 (in logarithmic coordinates). 
 

 

 
 

Fig. 2. Visualization of the available monitoring data as time series 
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Trend analysis shows the selected time series of losses due to floods (Fig. 2A) is 

non-stationary. It can be characterized by a growing exponential trend with the 

coefficient of determination R2 = 0.5609. On the contrary, a trend in the selected time 

series of the observed maxima water discharges of the Tisza River is practically 

absent. This time series (Fig. 2B) can be assumed to be stationary. 

Assuming the stationary of the selected time series of data regarding maxima 

water discharges allows applying the hypothesis of a random variable to analyse 

them. In particular, for a maxima water discharge value observed in the past, an 

empirical probability of exceedance exP  may be attributed, namely, the probability 

(or risk) that the water discharge value could have been exceeded within a certain 

period of time. It can also be assumed that if the maxima water discharges of floods 

that caused losses in the past had appeared greater than they really observed, the 

losses would have been greater too. 

The above-mentioned assumptions allow determining risks of losses )(LR  

caused by past floods as products of empirical probabilities of exceedance exP  of 

the observed maxima water discharges and confirmed losses L : 

 

LPLR ex =)( .                                                (1) 

 

In this study, the probabilities exP  were calculated with two formulas: 

according to Chegodayev formula 

 

4.0

3.0
)(1

+

−
=

n

m
mP ,                                          (2) 

 

and for Weibull formula (known also as Kritsky-Menkel’s formula) 

 

n

m
mP

+
=

1
)(2 ,                                           (3) 

 

where m is the ordinal number of a member ranked in descending order of variation 

series; n is the total number of members of the variation series. 

The values of empirical probabilities of exceedance obtained with formulas (2), 

(3) were averaged so that 2/)( 21 PPPex += . Fig. 3 shows results of exP  calculations 

for three time intervals of hydrological observations of the Tisza River maximum 

water discharges gauged at the HS “Vylok”. 

 

 
 

Fig. 3. Curves of empirical exceedance probabilities of the gauged maximum water discharges  

0

1000

2000

3000

4000

0,01 0,1 1

Q
(m

3
/s

)

Pex (1/year)

1954-1979

1954-1985

1954-1997



~ 89 ~ 
 

ISSN: 2411-4049.  Екологічна безпека та природокористування, № 3 (43), 2022 

Trend analysis of the time series of the calculated risks of confirmed monetary 

losses due to floods of 1955-1998 (See below Fig. 4) indicates this time series is non-

stationary as well. However, its non-stationary appears to be weaker compared with 

the non-stationary of time series of the losses (Fig. 2B). In addition, some sample 

time series of the calculated risks of losses, for example due to the floods of  

1965-1969, 1970-1974, 1970-1979, may be considered as nearly stationary ones. 

 

 
 

Fig. 4. Visualization of the time series of the risks of confirmed monetary losses 
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the corresponding values of risks of losses. On the contrary, the values of risks of 

losses are more dependent on values of maxima discharges of floods than amounts 

of losses depend on them. Fig. 5 clearly reveals these patterns. 

 

  

  

 
Fig. 5. Visualization of the L = f(Q) and R(L) = f(Q) regressions  
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It should be also noted the regression dependence of the risks of losses due to 

floods on the maxima water discharges gauged at the HS “Vylok” can be the most 

substantive within time intervals of 4-10 years. So, in the intervals of 1965-1969 (the 

index of 3), 1970-1974 (4), and 1975-1979 (5), the R2 coefficients of determination 

for the regressions of R(L) = f(Q) (Fig. 5D) were 0.9416, 0.867, and 0.9542, 

correspondingly. It may be assumed while predicting the risk of flood losses in 

Transcarpathia in the time intervals of 4-10 years, the time factor may not be 

accounted for. As predictive models at such intervals simple exponential regressions 

can be used, where the risk of flood losses is considered a dependent variable, and 

maxima water discharge of the Tisza River an independent variable. 

 

4. The research objectives and methods 

 

In order to figure out whether there had been the realistic possibility to predict the 

monetary losses caused by the destructive floods of 1980, 1986, and 1998 in 

Transcarpathia based on the available information and monitoring data (Table 2), the 

following research objectives were set: (1) to review the available information on 

floods in the Transcarpathian region and perform the time series analysis of available 

data, namely, the time series of the maxima water discharges gauged at the 

HS “Vylok” from 1954 to 1999, and the confirmed monetary losses, which were 

caused by floods in the region from1955 to 1998; (2) to make scientific assumptions 

on the problem and choose a basic predictive model and its variables; (3) to apply 

the combined situational-inductive predictive modelling method (CSIPMM) to solve 

the problem of predictions for the losses due to floods in the Transcarpathian region; 

to assess its predictive efficiency within the available data on the floods that preceded 

the disastrous floods of 1980, 1986, and 1998, and perform the three retrospective 

predictions for the losses caused by floods of 1980, 1986, and 1998, namely, taking 

into account data on the annual maximum flood discharges from 1954 to 1979 

(before the flood of 1980), from 1954 to 1985 (before the flood of 1986), from 1954 

to 1997 (before the flood of 1998); (4) to analyse the findings of the performed 

predictions and assess their relative errors. 

Different methods within the holistic approach [103] to the problem under study 

were used: historical method; method of dialectical cognition and generalised 

scientific methods of theoretical and empirical research; heuristic methods; 

methods of analysis and synthesis; methods of expert evaluation and comparison; 

methods of formalization and modelling; as well as specific methods for time series 

analysis [104], intelligent data analysis [105, 106], and applied predictive 

modelling [107, 108] methods of modelling and decision making under risk and 

uncertainty [43, 109-111]. 

The basic research method was the combined situational-inductive predictive 

modelling method (CSIPMM), which is an original author’s development. The main 

provisions of the CSIPMM are set out in [112-114]. Moreover, in practice, this 

method was used in situational predictive modelling of the flood hazard in the 

Dniester river valley near the town of Halych [115] and prognostic modelling of 

piezometric levels based on seepage monitoring in an earthen dam [116]. 

The method of the CSIPMM is oriented to use extrapolation-regression type 

models to predict the behaviour of complex dynamic systems or processes under 

non-stationarity, data incompleteness, as well as structural and parametric 

uncertainty. The main idea of the CSIPMM is a purposeful decomposition of 
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a complex prediction problem based on monitoring data presented as time series to 

apply relatively simple predictive models. 

According to this method, the complex prediction problem is solved in two stages 

(Fig. 6). The first stage (A) realises the retrospective situational modelling task 

aiming to obtain a set of simple regression-extrapolations built on data of sample 

time series [112-116]. Fig. 5 shows an example of such retrospective situational 

modelling in the frame of the problem under study. The obtained situational models 

assume to be adequate or relevant ones only within certain periods of time being 

determined as situations. That is, the evolution of the dynamic system (process) is 

modelled in the context of its “movement” through a series of situations resulting 

from various reasons or actions. A complete description of the infinite set of all 

possible situations the system functioning is replaced by a certain finite set of 

generalized model situations that reproduce to a certain degree its possible states 

[117-119]. These model situations (by R. Reiter [118]) do not determine literally 

appropriate states of the system; they are presumed to show only the history of 

certain real events as completed sequences of actions in certain periods of time. Since 

real situations cannot be described totally, and it is possible to consider only some 

of their aspects, the non-monotonic output rule is used to describe the evolution of 

the dynamic system (process). Thereby, it is assumed (by J. McCarthy [117]) that on 

the basis of past facts, with which past model situations are described, and on using 

some general rules or assumptions, according to which actions and events within 

those situations take place, it is possible to predict some similar situations that will 

appear in the future. 

 

 
 

Fig. 6. Flow-chat representing the CSIPMM 

 

It should be mentioned, situational  modelling is popular today in economics, 

medicine, military affairs, forensics, politics, and other similar spheres, as well as in 

artificial intelligence, where the development of a logical approach to modelling the 

behaviour of complex dynamic systems and processes led to the creation of the 

special situational calculus theory [119]. 

In many applied studies relating to natural and man-made systems and processes 

situational models being built on sample data and adapted to limited time periods 

may be presented as simple (single-factor) regression models [112-116]. To realise 

this, unknown and uncontrollable factors being capable affecting the structure and 
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parameters of a situational model are considered a peculiar relatively unchangeable 

predictive background. Thereby, in fact, the predictive background reflects certain 

stable conditions in which the system (process) develops in a certain period of time, 

and, accordingly, determines the only specific situation and the only specific 

situational model [112-116]. 

The second stage (Fig. 6) realises the inductive modelling and prediction tasks. 

The inductive modelling task is reduced to generalization of the findings of 

retrospective situational modelling in the form of an inductive model of “levels” 

corresponding to some fixed predictor values (Fig. 7A). The inductive model of 

“levels” (Fig. 7A) is further considered as a tool for performing an extrapolation 

prediction of a future situation (or a set of situations), thereby predicting possible 

situational models of future periods. Actually, the main task of predicting based on 

monitoring data according to the CSIPMM is to solve the problem of extrapolation, 

which consists in establishing the most probable situational model matching up with 

a certain expected situation in the future (Fig. 7B).  

 

  

 
Fig. 7. Results of inductive modelling and establishing the prospective situational model 

R(L6)  

 

Ultimately, the obtained prospective situational model is used to predict the 

values of the resulting variable.  

 

5. Results 

 

In total, three options for the prediction were made: (1) taking into account the annual 

maximum flood discharges from 1954 to 1979 (before the flood of 1980); (2) the 

same from 1954 to 1985 (before the flood of 1986); (3) the same from 1954 to 1997 

(before the flood of 1998). It should be noted the exceedance probability empirical 

estimates of the discharges vary with the duration of hydrological observations (See 

Fig. 3). Therefore, it can be expected that the obtained results can differ depending 

on the selected predicting options. 

In order to assess the predictive (forecast) skill of the retrospective situational 

models (3), (4), (5), and the prospective situational model (6) taking into account the 

choice of the dependent (risk of losses) and independent (maximum water discharge) 

variables, as well as the structure of the situational model (one-factor regression) and 

the regression type (exponential function) the Nash-Sutcliffe model efficiency 
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coefficient (NSE) was used [120]. It is widely applied for assessing the goodness-

of-fit and predictive power of hydrological models [121]. 

The NSE coefficient value was calculated as: 
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where ioL , , ipL ,  are observed and predicted values of losses because of a flood i , 

ni ,1= ; n  is the number of floods being analysed to predict losses; oL  is the mean 

of the observed losses ioL , . 

Predicted values of losses were calculated with the formula 
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where )( ,ipLR  is the predicted value of the risk of losses because of a flood i  and 

iexP ,  is the empirical probability of exceedance of an observed (gauged) maxima 

water discharge iQ  of the flood i  causing the losses ioL , . 

It is thought [120] that values of the NSE nearer to 1 suggest a model with more 

predictive skill. An application of the NSE coefficient in regression procedures 

(NSER) was also used, which was equivalent to the coefficient of determination R2 

of the simple linear regression )( op LfL = .  

 

5.1. The results of predicting taking into account the annual maximum flood 

discharges from 1954 to 1979 (Prediction 1, before the flood of 1980)  

 

The retrospective situational models of the risks of monetary losses caused by the floods 

of 1965-1969 (situation 3), 1970-1974 (situation 4), and 1975-1979 (situation 5) taking 

into account the annual maximum water discharges from 1954 to 1979 (before the 

flood of 1980) are shown in Fig. 5D. In turn, Fig. 7 shows the results of inductive 

modelling carried out to establish the prospective situational model (situation 6), 

which was used to predict the risks of monetary losses caused by the floods of 1980, 

1986, and 1998. Inductive modelling was performed for “levels” that corresponded 

to the fixed values of maximum water discharges amounting to 1600, 1800, 2050, 

2070, 2500, and 3150 m3/s. Note, that the discharges of 2070, 2050, and 3150 m3/s 

included in the ensemble of “levels” were observed in 1980, 1986, and 1998, 

respectively. 

Below, Table 3 comprises the numerical results of the retrospective prediction of 

the monetary losses due to the floods that occurred from 1965 to 1979. In particular, 

they were used to assess the quality, and predictive skill of the retrospective 

situational models (3), (4), and (5). 
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Table 3 – The numerical results of retrospective predicting the monetary losses  

due to the floods of 1965-1979 

 

Years Q (m3/s) Pex (1/year) 
R(Lp) (UAH 

millions/year) 

Lp (UAH 

millions) 

Lo (UAH 

millions) 

1965 2 070 0.44 5.50 12.4 14.2 

1967 1 860 0.48 8.25 17.1 10.9 

1968 2 930 0.11 1.05 9.8 10.4 

1969 1 420 0.71 19.29 27.3 34.4 

1970 3 650 0.03 7.08 222.9 237.0 

1971 1 310 0.78 20.30 26.0 35.5 

1972 1 790 0.59 16.35 27.5 24.0 

1973 783 0.97 25.73 26.6 23.5 

1974 2 560 0.29 11.56 39.3 33.6 

1975 1 500 0.63 50.19 79.5 87.9 

1976 1 350 0.74 59.37 79.9 60.1 

1977 1 860 0.48 33.54 69.7 85.2 

1978 3 060 0.07 8.75 126.3 115.8 

1979 2 720 0.18 12.80 70.5 64.4 

 

The check revealed the NSE coefficient to be 0.973. The NSER coefficient  

(See below Fig. 9A) is 0.974. So, the predictive skill of the retrospective situational 

models (3), (4), and (5) shown in Fig. 5D is quite good. 

Table 4 comprises the modelled (predicted) values of the risks of monetary losses 

caused by the floods of 1965-1969 (situation 3), 1970-1974 (situation 4), and 1975-

1979 (situation 5). They were computed on the set presenting six “levels” of the fixed 

values of maximum water discharges amounting to 1600, 1800, 2050, 2070, 2500, 

and 3150 m3/s by means of the situational models shown in Fig. 5D. Further, these 

modelled values of the retrospective situational risks were used to build the inductive 

model of “levels” with extrapolation one step forward (to the next situation 6) 

(Fig. 7A) to get the prospective situational model 6 (Fig. 7B). 

 

Table 4 – The modelled values of the retrospective situational risks of monetary 

losses R(Lp) depending on the fixed values of water discharges Q  

 
Situations 

(situational models) 

N  = 3, 4, 5 (years)   

R(Lp) (UAH millions/year) computed for Q (m3/s) 

1 600 1 800 2 050 2 070 2 500 3 150 

3 (1965-1969) 13.63 9.26 5.72 5.50 2.40 0.68 

4 (1970-1974) 17.81 16.28 14.55 14.42 11.88 8.87 

5 (1975-1979) 44.87 35.87 27.11 26.51 16.38 7.91 

 

The numerical results of inductive modelling to get the prospective situational 

model 6 (Fig. 7B) are given in Table 5. The prediction results of the monetary flood 

losses caused by the floods of 1980, 1986, and 1998 taking into account the annual 

maximum flood discharges from 1954 to 1979 with the comparison with their 
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observed (confirmed) values are given below in Table 6 and Fig. 8. The predicted 

values of the losses were calculated with the formula (5). 

 

Table 5 – The numerical results of inductive modelling to get the prospective 

situational model 6 (for the situation with the number N = 6) 

 
“Levels” 

of 

Q (m3/s) 

Equations for the chosen “levels” of 

the inductive model depending on a 

situation with the number N 

Coefficients of 

determination 

R2 

 R(Lp) (UAH 

millions/year), 

N = 6  

1 600 R(L) = 2,0452e0,5958N 0.908 72.99 

1 800 R(L) = 1,1714e0,6768N 0.991 67.97 

2 050 R(L) = 0,5836e0,778N 0.987 62.14 

2 070 R(L) = 0,552e0,7861N 0.983 61.71 

2 500 R(L) = 0,1665e0,9603N 0.871 52.93 

3 150 R(L) = 0,0272e1,2235N 0.715 41.95 

 

The check of the predictive power of the combined situational-inductive 

predictive modelling method (CSIPMM) for modelling and predicting the losses 

caused by floods in the time interval from 1965 to 1998 revealed the NSE coefficient 

to be 0.939. The NSER coefficient (in regression procedure, see below Fig. 9B) is 

0.943. The NSE and NSER coefficient values confirm the quite high predictive 

efficiency of the CSIPMM to solve the presented problem. 

 

Table 6 – The observed and predicted losses due to the floods of 1980, 1986, 1998 

 

Years 
Q 

(m3/s) 

Pex 

(1/year) 

Lo (UAH 

millions) 

R(L) (UAH millions/year) Lp (UAH 

millions) 

Er 

(%) Actual Predicted 

1980 2 070 0.44 325.0 144.24 62.65 141.2 56.6 

1986 2 050 0.46 127.9 58.83 63.09 137.2 7.2 

1998 3 150 0.05 810.0 40.50 42.93 858.6 6.0 

 

 

 
 

Fig. 8. Visual comparison of time series of the observed (confirmed) and predicted values of 

monetary losses because of the floods from 1965 to 1998 
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Fig. 9. Visual illustration of the CSIPMM goodness-of-fit check to predict losses using the 

Nash-Sutcliffe efficiency coefficient in regression procedure (NSER) 
 

The relative prediction errors Er (%) were calculated with the formula 
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where oL  is the observed (conformed) and pL  is the predicted values of losses. 

The results of predicting the monetary losses caused by the floods of 1980, 1986, 

and 1998 in the Transcarpathian region according to the time series of the losses due 

to floods of 1965-1979 and the maximum water discharges gauged at the 

HS “Vylok” from 1954 to 1979 indicate that there was the possibility to predict the 

losses because of the flood of 1986 (a relative error of the prediction rE  = 7.2%) 

and the flood of 1998 ( rE  = 6.0%) with good accuracy. With regard to the losses 

due to the flood of 1980 ( rE  = 56.6%), it should be noted that the prediction in total 

( pL  = UAH 141.2 million, in the maximum water discharge Q  = 2,070 m3/s) 

indicates that they would have exceeded eventually the losses due to the flood of 

1978 ( oL  = UAH 115.8 million, Q  = 3,060 m3/s). The main factor most likely 

affected the prediction accuracy was that the flood of 1980 occurred in the warm 

season (summer), which is a rather atypical phenomenon in Transcarpathia [101]. It 

can be assumed that the predicted value of the losses caused by the flood of 1980 

corresponds more to the hypothetical situation of the cold period flood. 

 

5.2. The results of predicting taking into account the annual maximum flood 

discharges from 1954 to 1985 (Prediction 2, before the flood of 1986) and from 

1954 to 1997 (Prediction 3, before the flood of 1998) 

 

Below, Fig. 10 summarises the results relating to Prediction 2 and Prediction 3 in 

graphical form. These predictions were also performed on the basis of the time series 

of the confirmed monetary losses due to the floods that happened in the interval from 

1965 to 1979. There were considered the same situational time intervals 1965-1969 

(situation 3), 1970-1974 (situation 4), and 1975-1979 (situation 5), and similar 

situational-inductive models by type and structure. 
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Prediction 2 Prediction 3 

 
Fig. 10. Visual presentation of predicting monetary losses according to Prediction 2  

and Prediction 3  
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Compared with the previous Prediction 1 (See its results in the section 5.1 of the 

article), only the parameters (coefficients) of the accepted situational and inductive 

models were subject to clarification taking into account the new values of the 

empirical exceedance probabilities (See Fig. 3) determined for the extended time 

series of the maximum water discharges: from 1954 to 1985 (Prediction 2), from 

1954 to 1997 (Prediction 3). 

In particular, in Fig. 10, there are the retrospective situational models of the risks 

of monetary losses caused by the floods of 1965-1969 (situation 3), 1970-1974 

(situation 4), and 1975-1979 (situation 5), where (A) refers to Prediction 2, and (B) – 

Prediction 3. Next, there are the results of inductive modelling carried out to establish 

the prospective situational model 6 (for the situation with the number 6) to predict 

the risks of losses due to the floods of 1986, and 1998, shown as (C) and (D), (E) 

and (F), correspondingly. Finally, there are presented visual comparisons of time 

series relating to the predicted and observed (confirmed) values of monetary losses 

because of the floods from 1965 to 1998 according to results of Prediction 2 

(Fig. 10G), and  Prediction 3 (Fig. 10H). 

The check of the predictive power of the developed models revealed the Nash-

Sutcliffe model efficiency coefficient (NSE) value in the case of Prediction 2 varied 

from 0.972 (retrospective situational modelling) to 0.932 (including prospective 

modelling); the NSER coefficient value – from 0.972 to 0.958, correspondingly. In 

the case of Prediction 3, the NSE coefficient value varied from 0.957 (retrospective 

situational modelling) to 0.93 (including prospective modelling); the NSER 

coefficient value – from 0.959 to 0.94, correspondingly. Totally, the obtained NSE 

and NSER coefficient values confirm the good predictive efficiency of the CSIPMM 

to solve the considered problem. 

Table 7 summarises the numerical data for the comparison the observed 

(confirmed) and predicted values of the monetary losses due to the floods of 1980, 

1986, and 1998 according to the accepted prediction options. 

 

Table 7 – Comparison the observed and predicted values of the monetary losses due 

to the floods of 1980, 1986, and 1998 according to the accepted prediction options 

 

Years 
Q 

(m3/s) 

Pex 

(1/year) 

Lo (UAH 

millions) 

R(L)  

(UAH millions/year) Lp (UAH 

millions) 

Er, 

% 
Actual Predicted 

Prediction 1 taking into account the annual maximum flood discharges from 1954 to 

1979 (before the flood of 1980) 

1980 2 070 0.44 325.0 144.24 62.65 141.2 56.6 

1986 2 050 0.46 127.9 58.83 63.09 137.2 7.2 

1998 3 150 0.05 810.0 40.50 42.93 858.6 6.0 

Prediction 2 taking into account the annual maximum flood discharges from 1954 to 

1985 (before the flood of 1986) 

1986 2 050 0.44 127.9 56.8 61.18 139.0 8.7 

1998 3 150 0.05 810.0 40.50 35.30 706.0 12.8 

Prediction 3 taking into account the annual maximum flood discharges from 1954 to 

1997 (before the flood of 1998) 

1998 3 150 0.03 810.0 24.30 26.86 895.2 10.5 
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Analysing the findings given in Table 7, it can be concluded that all three 

predictions, which were based on the different duration of hydrological observations, 

showed fairly good reliability in predicting the monetary losses caused by the 1986 

and 1998 floods. Moreover, there had been a good chance to predict the losses related 

to those floods or other similar floods in 1980-1998 by the results of the first 

Prediction 1 considering the losses caused by the previous floods that occurred from 

1965 to 1979. 

 

6. Discussion 

 

Is it possible to predict the flood losses in the Tisza River basin in the Ukrainian 

Transcarpathia based on the long-term time series data presenting the flood losses 

and the gauged maximum flood water discharges at HS “Vylok”? Provided that 

proper monitoring is implemented? This research showed such a possibility existed 

at least regarding the disastrous 1986 and 1998 floods. 

In order to answer these questions, in the study, the original method of prediction 

was used, which is an original author's development. The method was called as the 

combined situational-inductive predictive modelling method (CSIPMM). It was 

shown the CSIPMM allows implementing the main ideas of the adaptive approach 

to predictive modelling according to flood monitoring data, in particular to ensure 

effective adjustment of applied predictive models as new monitoring data become 

available.  

Regarding the problem under study, it is wanted to assume the CSIPMM allows 

performing different types of predictions of the monetary losses caused by future 

floods. These can be long-term predictions, for example, in the form of perspective 

situational models (models of future situations), or operational predictions – within 

defined situations, with using temporary situational models. The CSIPMM can be 

also used to retrospectively predict losses that may have occurred in the past (within 

the procedure of restoring lost data in time series), which have not been confirmed 

or have been avoided due to flood control measures. To illustrate it, Fig. 11 shows 

some results of retrospectively predicting monetary losses that might have come due 

to the 1960-1964, and 1966 floods, for which data regarding credible losses are 

missing (See Table 2, Fig. 2B).  

 

  

 
Fig. 11 – Visual illustration of the CSIPMM applying to retrospectively predict flood losses 

within the procedure of restoring lost data in time series 
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In particular, Fig. 11A shows the retrospective situational model 2 to predict the 

possible (unconfirmed) risks of losses caused by the floods of 1960-1964, for which 

data regarding credible losses are missing. These risks may be obtained due to the 

results of inductive modelling (See the inductive models of “levels” in Fig. 7A and the 

corresponding equations in Table 5) with extrapolation one step back (to situation 2 

preceding assumingly the situations 3, 4, 5). In turn, the “missed” value of the risk 

of losses due to the flood of 1966 (Fig. 11A) may be restored by the retrospective 

model 3. The “missed” losses that might have been caused by the floods of 1960-

1964 and 1966 are shown visually in Fig. 11B. 

It should be noted that flood losses are almost inevitable. Eventually, the 

worldwide practice shows that only 12% of these losses were insured [2]. Often, 

even obvious losses are neglected. In any case, predicting adequately the probable 

flood losses that have been avoided can be seen as a powerful tool to justify spending 

on flood-suppressing measures. Thereby, solving the problems of perspective and 

retrospective predicting of flood losses will allow us to more adequately justify the 

measures aimed at flood management in order to minimize the negative 

consequences associated with floods. 

A challenge probably is the flood of 1980. However, in this case, the main factor 

most likely complicated predicting was that the flood of 1980 occurred in the warm 

season (summer), which is an atypical phenomenon in Transcarpathia [101]. Herein, 

this is an outlier case, something like a “black swan” according to Nassim Taleb. 

The possibility of such “outlier” data on floods being has been mentioned earlier in 

the example of the Dniester River near the town of Halych [115]. 

 

Conclusions 

 

1. The main aspects of flood hazards in the world and in Ukraine were analysed. It 

was noted that proper organization of flood monitoring with a comprehensive 

assessment of flood losses could be an important component of modern, holistic 

flood management strategies internationally, nationally, and locally. Purposeful 

monitoring creating the reliable groundwork for predicting losses can contribute to 

effective decision-making within different flood management strategies in order to 

prevent and minimise flood risks. 

2. In order to emphasize the importance of targeted monitoring of flood losses in 

conjunction with the usual hydrological monitoring of river runoff, there was 

performed a retrospective prediction of the confirmed monetary losses due to 

destructive floods that occurred in the Tisza River basin in the Transcarpathian 

region of Ukraine in 1980, 1986, and 1990 using available monitoring data on the 

floods in the region from 1955 to 1998. The main aim of the research was to reveal 

whether the confirmed monetary losses caused by the floods of 1980, 1986, and 1990 

could have been predicted in advance. 

3. Input data comprised the time series on maxima water discharges gauged at the 

hydrological station (HS) “Vylok” from 1954 to 1999 and confirmed losses due to 

floods in the Transcarpathian region from1955 to 1998. While solving the problem, 

there was revealed and modelled the dependence of risks of flood losses on the 

maximum water discharges of the Tisza River gauged at the HS “Vylok”. Predicting 

was based on the hypothesis of the stationary random process for maximum water 

discharges, which allowed using an empirical distribution function of a random 
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variable regarding observed flood water discharges for numerical computing of the 

risks of flood losses. 

4. Predicting was carried out by means of the combined situational-inductive 

predictive modelling method (CSIPMM) of an original author’s development. The 

method is based on the use of extrapolation-regression type models. According to 

this method, the prediction task was performed in two stages. The first stage realised 

the retrospective situational modelling task aiming to obtain a set of simple 

regressions (situational models) built on data of sample time series. Those situational 

models assumed to be adequate and relevant ones within certain periods of time 

determined as situations. In the second stage, based on the generalization (on 

ensemble) of the obtained retrospective situational models, inductive “levels” 

models were built to reflect the behaviour of risks of losses as a resulting variable at 

fixed values of the predictor in time. Next, the inductive models were used in 

extrapolative predicting situational models belonging to future periods (situations). 

5. In total, three prediction options were made: (1) taking into account the annual 

maximum flood discharges from 1954 to 1979 (before the flood of 1980); (2) the 

same from 1954 to 1985 (before the flood of 1986); (3) the same from 1954 to 1997 

(before the flood of 1998). In order to assess the predictive skill of developed 

predictive models the Nash-Sutcliffe model efficiency coefficient (NSE) and its 

application in regression procedures (NSER) were used. The check revealed that the 

NSE coefficient value for all three prediction options was over 0.93, and the NSER 

coefficient value – 0.94. It confirmed the good predictive skill of the used predictive 

models and the CSIPMM as a predictive modelling method. The study found that 

there had been a realistic possibility to predict the confirmed monetary losses caused 

by the flood of 1986 and 1998 (relative predicting errors of 7.2-8.7% and 6.0-12.8% 

depending on the prediction options). 
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Д.В. Стефанишин 

ПРО ЩО МИ МОГЛИ ДІЗНАТИСЯ З ПОПЕРЕДНІХ ДАНИХ ПРО ПОВЕНІ, 

ЩОБ ПЕРЕДБАЧИТИ ЗБИТКИ, ЗАВДАНІ КАТАСТРОФІЧНИМИ 

ПОВЕНЯМИ 1980, 1986 ТА 1998 РОКІВ В УКРАЇНСЬКОМУ ЗАКАРПАТТІ?  

Анотація. У цій статті досліджуються деякі аспекти, пов’язані з ретроспективним 

прогнозуванням підтверджених грошових втрат (збитків) від паводків, спричинених 

катастрофічними повенями 1980, 1986 та 1998 років у басейні річки Тиса в 

Закарпатській області України. Дослідження проводилося на основі двох часових 

рядів – збитків від минулих паводків та максимальних скидів, зафіксованих на 

гідрологічній станції поблизу села Вилок Виноградівського району. Основною метою 

дослідження було з'ясувати, чи була реальна можливість заздалегідь передбачити 

збитки від цих повеней.  

При вирішенні поставленого завдання було виявлено та змодельовано залежність 

ризику втрат внаслідок паводків на Закарпатті від максимальних витрат води р. Тиса, 

заміряних на гідрологічній станції «Вилок». Прогнозування ґрунтувалося на гіпотезі 

стаціонарного випадкового процесу для максимальних витрат води, що дозволило 

використовувати емпіричну функцію розподілу випадкової величини щодо витрат 

води для оцінки ризику втрат від паводків. 

Ретроспективне прогнозування втрат від повеней 1980, 1986, 1998 рр. 

здійснювалося за допомогою комбінованого ситуаційно-індуктивного методу 

прогнозного моделювання, який є оригінальною авторською розробкою. Метод 

стосується прогнозування поведінки складних динамічних систем на основі 

результатів моніторингу, представлених у вигляді часових рядів, дані яких 

відображають еволюцію результуючої (залежної) змінної та пояснюючої (незалежної) 

змінної (провісника). Метод використовує моделі екстраполяційно-регресійного типу. 

Згідно з цим методом завдання прогнозування виконується в два етапи. На першому 

етапі реалізується завдання ретроспективного ситуаційного моделювання з метою 

отримання набору простих регресій (ситуаційних моделей), побудованих за даними 

вибіркових часових рядів. Ситуаційні моделі визнаються адекватними або 

релевантними лише в межах певних проміжків часу, визначених як ситуації. На 

другому етапі на основі узагальнення (за деяким ансамблем) отриманих 

ретроспективних ситуаційних моделей будуються індуктивні моделі «рівнів», які 

відображають поведінку контрольованого параметра системи або процесу 

(результуючої змінної) при кількох фіксованих значеннях провісника в залежності від 

часу. Індуктивні моделі використовуються для екстраполяційного прогнозування 

ситуаційних моделей майбутніх періодів (ситуацій). 

Всього було виконано три варіанти прогнозування: (1) з урахуванням даних щодо 

щорічних максимальних витрат води паводків з 1954 по 1979 рр. (до повені 1980 р.); 

(2) те саме з 1954 по 1985 рік (до повені 1986 року); (3) те саме з 1954 по 1997 рік (до 

повені 1998 року). Дослідження показало, що була реальна можливість передбачити 

підтверджені грошові втрати, завдані повенями 1986 та 1998 років (відносні похибки 

прогнозів 7,2-8,7% і 6,0-12,8% залежно від варіантів). 

Ключові слова: комбінований ситуаційно-індуктивний метод прогнозного 

моделювання; повені; збитки від повені; ризик збитків; максимальні скиди води; 

прогнозування; часові ряди 
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