Comprehensive emergent assessment of ecosystem services and economic efficiency of urban green structures
DOI:
https://doi.org/10.32347/2411-4049.2025.4.20-34Keywords:
urban green infrastructure, green structures, ecosystem services, emergy accounting, cost-effectiveness, noise protection functionAbstract
Rapid urbanisation in recent years has led to the deterioration of urban ecosystems and the emergence of numerous environmental and socio-economic problems. In response to these challenges, the implementation of green structures has gained considerable popularity as a sustainable approach to urban planning. This paper presents a comprehensive assessment of the costs, benefits (ecosystem services) and impacts (ecosystem disservices) associated with the use of green structures in the urban environment, using the emergy accounting approach, which allows for the quantitative assessment of resource costs in biophysical units through the prism of energy transformations. To achieve this goal, a new integrated assessment system is proposed, covering key components: assessment of the costs of implementing and operating green structures, assessment of ecosystem services, determination of environmental costs to compensate for damage to public health and biodiversity, and identification of ecosystem disservices. In particular, the economic efficiency of green walls in reducing noise pollution is investigated using the example of typical urban configurations of apartment buildings. The results show that green roofs provide greater benefits to the ecosystem compared to other types of green structures, but they are accompanied by high initial construction costs and require more intensive maintenance. Green walls demonstrated the highest emergent costs for noise pollution reduction (5.77×1012 sej/m2·year), indicating their potential effectiveness in improving the city's acoustic environment. Cost-benefit calculations are presented for two simulated architectural configurations, reflecting the impact of green walls on noise reduction and aesthetic benefits for residents; the results show that in both cases the benefits significantly outweigh the costs. The data obtained provides valuable information for urban planners, policymakers and other stakeholders, facilitating informed decisions on the development of sustainable cities to ensure the well-being of current and future generations.
References
Karunaratne, T.L.W.; Chow, C.L. (2022). Fire Spread along Vertical Greenery Systems from Window Ejected Flame: A Study Based on a Fire Dynamic Simulator Model. J. Build. Eng., 62, 105359, doi:10.1016/j.jobe.2022.105359.
Pichlhöfer, A.; Korjenic, A.; Sulejmanovski, A.; Streit, E. (2023). Influence of Facade Greening with Ivy on Thermal Performance of Masonry Walls. Sustainability, 15, 9546, doi:10.3390/su15129546.
Bagheri Moghaddam, F.; Fort Mir, J.M.; Navarro Delgado, I.; Redondo Dominguez, E. (2021). Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability, 13, 6706, doi:10.3390/su13126706.
Kim, H.; Oh, K.; Yoo, I. (2023). Analysis of Spatial Characteristics Contributing to Urban Cold Air Flow. Land, 12, 2165, doi:10.3390/land12122165.
Lin, H.; Ni, H.; Xiao, Y.; Zhu, X. (2023). Couple Simulations with CFD and Ladybug + Honeybee Tools for Green Façade Optimizing the Thermal Comfort in a Transitional Space in Hot-Humid Climate. J. Asian Archit. Build. Eng., 22, 1317–1342, doi:10.1080/13467581.2022.2081574.
Kravchenko, М.V.; Tkachenko, T.M. (2023). Problems of Improving the Terminology and Modern Classification of “Green” Constructions for the Creation of Ukrainian “Green” Standards. Collect. Sci. Publ. NUS, 493, 194–204, doi:10.15589/znp2023.4(493).26.
Kravchenko, M.; Trach, Y.; Trach, R.; Tkachenko, T.; Mileikovskyi, V. (2024). Improving the Efficiency and Environmental Friendliness of Urban Stormwater Management by Enhancing the Water Filtration Model in Rain Gardens. Water, 16, 1316, doi:10.3390/w16101316.
Tkachenko, T.; Kravchenko, M.; Vasylenko, L.; Shumbar, K.; Shcherbak, A.; Zozulya, S. (2024). «Green» Structures in the Urbanized Environment: Studying the Impact of «green» Roofs on Environmental Parameters and Rainwater Quality. Bibliographic Review. Probl. Water Supply Sewerage Hydraul., 48–64, doi:10.32347/2524-0021.2024.46.48-64.
Prudencio, L.; Null, S.E. (2018). Stormwater Management and Ecosystem Services: A Review. Environ. Res. Lett., 13, 033002, doi:10.1088/1748-9326/aaa81a.
Blanco, J.; Dendoncker, N.; Barnaud, C.; Sirami, C. (2019). Ecosystem Disservices Matter: Towards Their Systematic Integration within Ecosystem Service Research and Policy. Ecosyst. Serv., 36, 100913, doi:10.1016/j.ecoser.2019.100913.
Tian, Y.; Wu, H.; Zhang, G.; Wang, L.; Zheng, D.; Li, S. (2020). Perceptions of Ecosystem Services, Disservices and Willingness-to-Pay for Urban Green Space Conservation. J. Environ. Manage., 260, 110140, doi:10.1016/j.jenvman.2020.110140.
Saco, P.M.; McDonough, K.R.; Rodriguez, J.F.; Rivera-Zayas, J.; Sandi, S.G. (2021). The Role of Soils in the Regulation of Hazards and Extreme Events. Philos. Trans. R. Soc. B Biol. Sci., 376, 20200178, doi:10.1098/rstb.2020.0178.
Kravchenko, M.V.; Tkachenko, T.M. (2024). Calculation of the Ecological and Economic Effect of Collecting Rainwater with «green» Roofs. Environ. Saf. Nat. Resour., 49, 34–48, doi:10.32347/2411-4049.2024.1.34-48.
Odum, H.T. (1996). Environmental Accounting: EMERGY and Environmental Decision Making; Wiley: New York, NY, ISBN 978-0-471-11442-0.
Duan, N.; Liu, X.D.; Dai, J.; Lin, C.; Xia, X.H.; Gao, R.Y.; Wang, Y.; Chen, S.Q.; Yang, J.; Qi, J. (2011). Evaluating the Environmental Impacts of an Urban Wetland Park Based on Emergy Accounting and Life Cycle Assessment: A Case Study in Beijing. Ecol. Model., 222, 351–359, doi:10.1016/j.ecolmodel.2010.08.028.
Song, X.; Lv, X.; Li, C. (2015). Willingness and Motivation of Residents to Pay for Conservation of Urban Green Spaces in Jinan, China. Acta Ecol. Sin., 35, 89–94, doi:10.1016/j.chnaes.2015.06.003.
Chapin, F.S.; Eviner, V.T. (2007). Biogeochemistry of Terrestrial Net Primary Production. In Treatise on Geochemistry; Elsevier, pp. 1–35 ISBN 978-0-08-043751-4.
Kravchenko, M.; Wrzesiński, G.; Pawluk, K.; Lendo-Siwicka, M.; Markiewicz, A.; Tkachenko, T.; Mileikovskyi, V.; Zhovkva, O.; Szymanek, S.; Piechowicz, K. (2024). Improving Urban Stormwater Management Using the Hydrological Model of Water Infiltration by Rain Gardens Considering the Water Column. Water, 16, 2339, doi:10.3390/w16162339.
Global Soil Erosion - ESDAC - European Commission Available online: https://esdac.jrc.ec.europa.eu/themes/global-soil-erosion (accessed on 19 August 2025).
Liu, G.; Yang, Z.; Chen, B.; Ulgiati, S. (2011). Monitoring Trends of Urban Development and Environmental Impact of Beijing, 1999–2006. Sci. Total Environ., 409, 3295–3308, doi:10.1016/j.scitotenv.2011.05.045.
Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. (2017). ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess., 22, 138–147, doi:10.1007/s11367-016-1246-y.
Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. (2012). Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-Attenuation Values in a Cost-Benefit Analysis of a Green Wall Affecting Courtyards. Int. J. Environ. Res. Public. Health, 9, 3770–3788, doi:10.3390/ijerph9113770.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 К.В. Шумбар, М.В. Кравченко, Л.О. Василенко, Т.М. Ткаченко, О.С. Волошкіна, А.І. Щербак

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Environmental safety and natural resources» works under Creative Commons Attribution 4.0 International (CC BY 4.0).
The licensing policy is compatible with the overwhelming majority of open access and archiving policies.