Mathematical modeling, intelligent data analysis and artificial intelligence to support decision-making in post-war reconstruction

Authors

  • Oleksandr Trofymchuk Corresponding Member of the NASU, D. S. (Сomputer science), Professor, Director of the Institute of Telecommunications and Global Information Space of the NASU, Kyiv, Ukraine https://orcid.org/0000-0003-3358-6274
  • Petro Bidyuk Doctor of Technical Sciences, Professor, Professor of the Department of Mathematical Methods of System Analysis, NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine https://orcid.org/0000-0002-7421-3565
  • Oleksandr Terentiev Doctor of Technical Sciences, Associate Professor, Principal researcher, Institute of Telecommunications and Global Information Space of the NASU, Kyiv, Ukraine https://orcid.org/0000-0002-4288-1753
  • Tetyana Prosyankina-Zharova PhD, Associate professor, Senior Researcher, Institute of Telecommunications and Global Information Space of the NASU, Kyiv, Ukraine https://orcid.org/0000-0002-9623-8771

DOI:

https://doi.org/10.32347/2411-4049.2025.3.33-49

Keywords:

decision-making support system, management decisions, information technology, data processing, post-war recovery

Abstract

The article is devoted to the actual scientific and applied problem – development of information technologies of support of making management decisions in conditions of systemic uncertainty, in particular, characteristic for periods of martial law and post-war recovery. Its peculiarity is complexity of formalization and structuring, necessity of solution of tasks of decision-making in conditions of systemic uncertainty and risk caused by military aggression. Therefore, the actual problem is development of scientifically based flexible and universal methodology of application of mathematical models, methods of intellectual data analysis, artificial intelligence, information technologies for formation of management decisions, within the framework of the corresponding decision support system (DSS). In the work, the architecture of the corresponding DSS is proposed, the key link of which is subsystem of preliminary processing of large volumes of input data formed from statistical indicators, results of observations and surveys, information from Internet sources, etc., for construction of models of the studied processes, development of scenarios, strategic and operational planning and forecasting. The system implements all elements of the technological chain of collecting and processing structured and unstructured data, mathematical modeling, methods of intelligent data analysis, scenario analysis, cognitive modeling, artificial intelligence, etc. A feature of the developed methodology is the ability to adequately assess the current situation, its retrospective and predict its development and consequences under several scenarios, which is relevant for decision-making tasks in martial law and post-war recovery. The proposed information technologies are intended for use in state and public administration systems. Their structure is flexible and adaptive: the components can be used separately or as part of existing decision-making support systems, implementation will increase the quality and efficiency of management decisions by optimizing analytical processes and data processing speed.

References

Trofymchuk, O. M., Bidiuk, P. I., Prosiankina-Zharova, T. I., & Terentiev, O. M. (2019). Decision support systems for modelling, forecasting and risk estimation: Monography. Riga: LAP LAMBERT Academic Publishing.

Trofymchuk, O. M., Bidyuk, P. I., Prosiankina-Zharova, T. I., & Terentiev, O. M. (2023). Bayesian data analysis in modeling and forecasting nonlinear nonstationary financial and economic processes. Problemy keruvannja ta informatyky, 4, 71–83. https://doi.org/10.34229/1028-0979-2023-4-6 [in Ukrainian].

Bidjuk, P. I., Tymoshhuk, O. L., Kovalenko, A. Je., & Korshevnjuk, L. O. (2022). Systemy i metody pidtrymky pryjnjattja rishen': Pidruchnyk dlja zdobuvachiv stupenja magistra za special'nistju 124 Systemnyj analiz. Kyiv: KPI im. Igorja Sikors'kogo [in Ukrainian].

Trofymchuk, O., Bidiuk, P., Terentiev, O., & Klymenko, V. (2024). The methodology for adaptive modeling and forecasting nonlinear and nonstationary processes. Problemy keruvannja ta informatyky, 1, 63–79.

Kuznietsova, N. V., Trofymchuk, O. M., Bidyuk, P. I., Terentiev, O. M., & Levenchuk, L. B. (2021). Bayesian modelling of risks of various origin. KPI Science News, 4, 7–18. https://doi.org/10.20535/kpisn.2021.4.251684

Korbicza, J., Trofymchuk, O., Bidiuk, P., Kuznietsova, N., Terentiev, O., & Prosiankina-Zharova, T. (2021). Probabilistic modeling of risks of different origin. In Modern Information Technologies for Environmental Safety Management, Nature Management, Emergency Measures (pp. 29–42). Kyiv, Ukraine.

Trofymchuk, O. M., Bidyuk, P. I., Prosiankina-Zharova, T. I., & Terentiev, O. M. (2022). Bayesian data analysis in modeling and forecasting nonlinear nonstationary financial and economic processes. In ХХІ Mizhnarodna naukovo-praktychna konferencija: “Informacijno-komunikacijni tehnologii' ta stalyj rozvytok” (pp. 14–16). Kyiv: TOV “Vydavnyctvo Juston” [in Ukrainian].

Bidyuk, P. I., Korshevnyuk, L. O., Gozhyi, O. P., Kalinina, I. O., Prosyankina-Zharova, T. I., & Terentiev, O. M. (2019). Modeling and forecasting financial and economic processes with decision support system. Naukovi visti KPI, 5–6, 7–17. https://doi.org/10.20535/kpi-sn.2019.5-6.176835

Dovgyj, S. O., Bidjuk, P. I., & Trofymchuk, O. M. (2014). Systemy pidtrymky pryjnjattja rishen' na osnovi statystychno-jmovirnisnyh metodiv. Kyiv: Logos [in Ukrainian].

Dovgyj, S. O., Kopijka, O. V., & Kozlov, O. S. (2023). Peredacha informacii' v avtomatyzovanyh systemah special'nogo pryznachennja. Ekologichna bezpeka ta pryrodokorystuvannja, 1(45), 76–90. https://doi.org/10.32347/2411-4049.2023.1.76-90 [in Ukrainian].

Ivanenko, V. I. (2015). Ochikuvana korysnist' u sytuacijah pryjnjattja rishen' z vypadkovymy u shyrokomu sensi naslidkamy. Systemni doslidzhennja ta informacijni tehnologii', 2, 51–58 [in Ukrainian].

Korbicz, J., Bidyuk, P., Kuznietsova, N., Terentiev, O., & Prosiankina-Zharova, T. (2020). Multivariate distribution model for financial risks management. In The 9th International Conference "Information Control Systems & Technologies" (ICST2020) (pp. 416–429). CEUR Workshop Proceedings.

Nakonechnyi, O., & Podlipenko, Y. (2021). Guaranteed estimation problems in the theory of linear ordinary differential equations with uncertain data. River Publishers.

Polishhuk, V. B., Netesin, I. Je., & Nesterenko, O. V. (2019). Informacijni tehnologii' v upravlinni oboronnymy resursamy: metodologichnyj kontekst ta pryklady praktychnoi' realizacii'. Kyiv: UkrNC RIT [in Ukrainian].

Pankratova, N. D. (2018). Systemnyj analiz. Teorija ta zastosuvannja. Kyiv: Naukova Dumka [in Ukrainian].

Vasjanin, V. O., Trofymchuk, O. M., & Ushakova, L. P. (2025). Metodologija matematychnogo modeljuvannja perspektyvnogo rozvytku vuzliv i transportnyh marshrutiv u bagatoproduktovij ijerarhichnij merezhi. II. Eksperymental'ni doslidzhennja. Kibernetyka ta systemnyj analiz, 61(2), 78–98. https://doi.org/10.34229/KCA2522-9664 [in Ukrainian].

Bocharova, M., & Malakhov, E. (2024). Improving information theory of context-aware phrase embeddings in HR domain. Eastern-European Journal of Enterprise Technologies, 5, 53–60. https://doi.org/10.15587/1729-4061.2024.313970

Cjucjura, S., Gnatchenko, D., & Fibruk, R. (2024). Algorytm rozroblennja veb-orijentovanogo zastosunku cyfrovizacii' pidpryjemstva. Upravlinnja rozvytkom skladnyh system, 59, 235–241. https://doi.org/10.32347/2412-9933.2024.59.235-241 [in Ukrainian].

Zgurovsky, M. Z., & Zaychenko, Y. P. (2019). Big data: Conceptual analysis and applications. Switzerland: International Publishing.

Zgurovsky, M. Z., & Zaychenko, Y. P. (2016). The fundamentals of computational intelligence: System approach. Switzerland: Springer International Publishing.

Mashkov, V., Lytvynenko, V., & Lurie, I. (2023). Modeling and simulating mutual testing in complex systems by using Petri nets. International Journal of Image, Graphics and Signal Processing, 15(6), 81–93. https://doi.org/10.5815/ijigsp.2023.06.07

Korablyov, M., & Lutskyy, S. (2022). System-information models for intelligent information processing. Innovative Technologies and Scientific Solutions for Industries, 3(21), 26–38. https://doi.org/10.30837/ITSSI.2022.21.026

Zgurovsky, M., Lande, D., Boldak, A., et al. (2021). Linguistic analysis of internet media and social network data in the problems of social transformation assessment. Cybernetics and Systems Analysis, 57(2), 228–237. https://doi.org/10.1007/s10559-021-00348-8

Pepelyaev, V. A., Golodnikov, A. N., & Golodnikova, N. A. (2022). A new method of reliability optimization in the classical problem statement. Cybernetics and Systems Analysis, 58(6), 917–922. https://doi.org/10.1007/s10559-023-00525

Petryk, M. R., Bojko, I. V., Himich, O. M., & Petryk, M. M. (2021). Vysokoproduktyvni superkomp’juterni tehnologii' modeljuvannja ta identyfikacii' skladnyh nanoporystyh kibersystem zi zvorotnymy zv’jazkamy dlja n-komponentnoi' kompetytyvnoi' adsorbcii'. Kibernetyka i systemnyj analiz, 57(2), 170–183. https://doi.org/10.1007/s10559-021-00357 [in Ukrainian].

Leonard, M., Sloan, J., Lee, J., & Elsheimer, B. (2007). An introduction to similarity analysis using SAS. Proceedings of the SAS Global Forum 2007 (22 p.). https://support.sas.com/rnd/app/ets/papers/similarityanalysis.pdf

Nabory danyh. (n.d.). https://data.gov.ua/dataset. https://data.gov.ua [in Ukrainian].

Publikacii'. (n.d.). Derzhavna sluzhba statystyky Ukrai'ny. https://www.ukrstat.gov.ua [in Ukrainian].

Nabory danyh. (n.d.). Nacional'nyj bank Ukrai'ny. https://bank.gov.ua/ua/statistic [in Ukrainian].

Nabory danyh. (n.d.). Ministerstvo finansiv Ukrai'ny. Statystychnyj zbirnyk. https://mof.gov.ua/uk/statistichnij-zbirnik [in Ukrainian].

Nabory danyh. (n.d.). Pensijnyj fond Ukrai'ny. Statystyka. https://www.pfu.gov.ua/statystyka [in Ukrainian].

Data Sets. (n.d.). World Bank Open Data. https://data.worldbank.org

United Nations Department of Economic and Social Affairs. (2016). Compendium of innovative practices in public governance and administration for sustainable development. https://doi.org/10.18356/4bbb6eba-en

Data Sets. (n.d.). European Bank for Reconstruction and Development. https://www.ebrd.com/home.html

Data Sets. (n.d.). European Parliament. https://www.europarl.europa.eu/portal/en

Published

2025-09-30

How to Cite

Trofymchuk, O., Bidyuk, P., Terentiev, O., & Prosyankina-Zharova, T. (2025). Mathematical modeling, intelligent data analysis and artificial intelligence to support decision-making in post-war reconstruction. Environmental Safety and Natural Resources, 55(3), 33–49. https://doi.org/10.32347/2411-4049.2025.3.33-49

Issue

Section

Information technology and mathematical modeling