Assessing the economic and environmental benefits of blue-green infrastructure to increase urban resilience to climate change
DOI:
https://doi.org/10.32347/2411-4049.2025.2.7-22Keywords:
blue-green infrastructure, green coatings, green facades, green walls, rain garden, climate change mitigation, climate change adaptation, cost analysisAbstract
Climate change and intensive urbanisation pose large-scale challenges to engineering infrastructure and the livelihoods of the population in cities, in particular in the form of floods, soil degradation, droughts and increased pollution. The study focuses on the use of blue-green infrastructure (BGI) elements to improve climate resilience and ensure multifunctional development of urban areas. The article analyses the international experience of implementing the sponge city concept with a focus on the role of green structures. Particular attention is paid to assessing the costs and benefits of implementing BGI projects, in particular, the relationship between investment costs and positive effects, such as energy savings, carbon sequestration, improved air quality, and reduced urban heat island intensity. A comprehensive method for assessing the economic and environmental performance of BGI's facilities has been developed, including quantifying energy savings, determining the amount of CO2 sequestration, oxygen production by green structures, and economic evaluation of the benefits of oxygen release. The method also includes an analysis of environmental benefits throughout the life cycle of BGI's facilities, calculation of life cycle costs and estimation of construction costs for individual infrastructure elements. For the applied assessment of economic and environmental benefits, a calculation based on green pavement was made, taking into account its impact on climate change mitigation. Design solutions aimed at reducing the heat load in the urban environment are proposed, in particular, the potential of facade and roof structures to improve cooling and moisture retention efficiency is revealed. The possibilities of using BGI elements for cooling the urban microclimate are determined. The study was carried out as part of the international Erasmus+ and ClimEd projects aimed at developing climate-oriented education and sustainable urban planning.
References
Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ., 579, 1215–1227. 10.1016/j.scitotenv.2016.11.106.
Yuan, Y.; Zheng, Y.; Huang, X.; Zhai, J. (2024). Climate resilience of urban water systems: A case study of sponge cities in China. J. Clean. Prod., 451, 141781. 10.1016/j.jclepro.2024.141781.
Qiao, X.-J.; Liao, K.-H.; Randrup, T.B. (2020). Sustainable stormwater management: A qualitative case study of the Sponge Cities initiative in China. Sustain. Cities Soc., 53, 101963. 10.1016/j.scs.2019.101963.
García Sánchez, F.; Solecki, W.D.; Ribalaygua Batalla, C. (2018). Climate change adaptation in Europe and the United States: A comparative approach to urban green spaces in Bilbao and New York City. Land Use Policy, 79, 164–173. 10.1016/j.landusepol.2018.08.010.
Hu, T.; Chang, J.; Syrbe, R.U. (2020). Green Infrastructure Planning in Germany and China. Res. Urban. Ser., Vol. 6, 99-126 Pages. 10.7480/RIUS.6.96.
Engberg, L.A. (2018). Climate Adaptation and Citizens’ Participation in Denmark: Experiences from Copenhagen. In Climate Change in Cities; Hughes, S., Chu, E.K., Mason, S.G., Eds.; The Urban Book Series; Springer International Publishing: Cham; pp. 139–161. ISBN 978-3-319-65002-9. 10.1007/978-3-319-65003-6_8.
Zaręba, A.; Krzemińska, A.; Adynkiewicz-Piragas, M.; Widawski, K.; Van Der Horst, D.; Grijalva, F.; Monreal, R. (2022). Water Oriented City – A ‘5 Scales’ System of Blue and Green Infrastructure in Sponge Cities Supporting the Retention of the Urban Fabric. Water, 14, 4070. 10.3390/w14244070.
Katalog działań z przykładami dobrych praktyk - Transgea Available online: http://transgea.eu/katalog-dzialan-z-przykladami-dobrych-praktyk.html (accessed on Aug 23, 2024).
Sample, D.J.; Heaney, J.P.; Wright, L.T.; Fan, C.-Y.; Lai, F.-H.; Field, R. (2003). Costs of Best Management Practices and Associated Land for Urban Stormwater Control. J. Water Resour. Plan. Manag., 129, 59–68. 10.1061/(ASCE)0733-9496(2003)129:1(59).
Li, X.J.; Deng, J.X.; Xie, W.J.; Jim, C.Y.; Wei, T.B.; Lai, J.Y.; Liu, C.C. (2022). Comprehensive Benefit Evaluation of Pervious Pavement Based on China’s Sponge City Concept. Water, 14, 1500. 10.3390/w14091500.
Saadatpour, M.; Delkhosh, F.; Afshar, A.; Solis, S.S. (2020). Developing a simulation-optimization approach to allocate low impact development practices for managing hydrological alterations in urban watershed. Sustain. Cities Soc., 61, 102334. 10.1016/j.scs.2020.102334.
Cascone, S.; Leuzzo, A. (2023). Thermal Comfort in the Built Environment: A Digital Workflow for the Comparison of Different Green Infrastructure Strategies. Atmosphere, 14, 685. 10.3390/atmos14040685.
Xie, J.; Chen, H.; Liao, Z.; Gu, X.; Zhu, D.; Zhang, J. (2017). An integrated assessment of urban flooding mitigation strategies for robust decision making. Environ. Model. Softw., 95, 143–155. 10.1016/j.envsoft.2017.06.027.
Shah, A.M.; Liu, G.; Nawab, A.; Li, H.; Xu, D.; Yeboah, F.K.; Yang, Q.; Zhang, L. (2024). Sustainability and resilience interface at typical urban green and blue infrastructures: costs, benefits, and impacts assessment. Front. Sustain. Cities, 6, 1453829. 10.3389/frsc.2024.1453829.
Pulselli, R.M.; Pulselli, F.M.; Mazzali, U.; Peron, F.; Bastianoni, S. (2014). Emergy based evaluation of environmental performances of Living Wall and Grass Wall systems. Energy Build., 73, 200–211. 10.1016/j.enbuild.2014.01.034.
Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. (2021). Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev., 135, 110111. 10.1016/j.rser.2020.110111.
Manso, M.; Castro-Gomes, J. (2015). Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev., 41, 863–871. 10.1016/j.rser.2014.07.203.
Nesci, V.; Ballarini, I.; Rando Mazzarino, P.; Corrado, V. (2024). Living Walls and Green Façades: An Implementation Code for Energy Simulation. Buildings, 14, 2040. 10.3390/buildings14072040.
Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetali, S. (2012). Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Build. Environ., 48, 1–6. 10.1016/j.buildenv.2011.08.011.
Wang, Y.; Wang, Z.-H.; Rahmatollahi, N.; Hou, H. (2024). The impact of roof systems on cooling and building energy efficiency. Appl. Energy, 376, 124339. 10.1016/j.apenergy.2024.124339.
Wang, Z.-H. (2022). Reconceptualizing urban heat island: Beyond the urban-rural dichotomy. Sustain. Cities Soc., 77, 103581. 10.1016/j.scs.2021.103581.
Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev., 180, 113306. 10.1016/j.rser.2023.113306.
Waickowski, S.E.; DeGaetano, S.; Anderson, A.; Amatya, D.M.; Hunt, W. (2024). Plot Scale Evaluation of the Hydrologic and Water Quality Benefits of Blue Roofs Compared to Green and Conventional Roofs. J. Nat. Resour. Agric. Ecosyst., 2, 91–102. 10.13031/jnrae.15887.
Eingrüber, N.; Korres, W.; Schneider, K. (2025). Comparison of heat mitigation effects of blue roofs and green roofs on building wall temperature and thermal outdoor comfort based on scenario analyses using 3D microclimate modelling for a dense urban district . 10.5194/egusphere-egu24-9967.
Pan, Z.; Wang, C.; Yu, B.; Chen, Z.; Yuan, Y.; Li, G.; Zhang, J.; Xiao, T. (2024). Assessing multifunctional retrofit potential of urban roof areas and evaluating the power and carbon benefits under efficient retrofit scenarios. J. Clean. Prod., 444, 141270. 10.1016/j.jclepro.2024.141270.
Bush, J. (2020). The role of local government greening policies in the transition towards nature-based cities. Environ. Innov. Soc. Transit., 35, 35–44. 10.1016/j.eist.2020.01.015.
Wamsler, C.; Wickenberg, B.; Hanson, H.; Alkan Olsson, J.; Stålhammar, S.; Björn, H.; Falck, H.; Gerell, D.; Oskarsson, T.; Simonsson, E.; et al. (2020). Environmental and climate policy integration: Targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod., 247, 119154. 10.1016/j.jclepro.2019.119154.
Croeser, T.; Garrard, G.E.; Thomas, F.M.; Tran, T.D.; Mell, I.; Clement, S.; Sánchez, R.; Bekessy, S. (2021). Diagnosing delivery capabilities on a large international nature-based solutions project. Npj Urban Sustain., 1, 32. 10.1038/s42949-021-00036-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 М.В. Кравченко, Т.М. Ткаченко, О.С. Волошкіна, Л.О. Василенко, І.О. Святогоров

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Environmental safety and natural resources» works under Creative Commons Attribution 4.0 International (CC BY 4.0).
The licensing policy is compatible with the overwhelming majority of open access and archiving policies.