Usage of intellectual analysis of ecological-economic data in the pension insurance system and for forecasting expenditures on social protection and social security

Authors

DOI:

https://doi.org/10.32347/2411-4049.2024.3.161-176

Keywords:

expenses for social protection and social security, air pollution, Bayesian network, principal component analysis, the system of actuarial calculations

Abstract

The paper is devoted to an actual scientific and applied problem – the development of methodology for applying mathematical models and data mining methods for actuarial calculations in mandatory state pension insurance system. The paper describes methodology for modeling changes in the number of pension recipients taking into account the impact of environmental factors, in particular air pollution. The basis of the proposed method is a multi-model approach, characterized by combination of data mining and probabilistic models in the form of Bayesian network, which are appropriate in conditions of statistical, parametric and structural uncertainty.
The proposed approach describes the change in number of pension recipients, in particular for disability and breadwinner loss, under influence of air pollution from organic and inorganic compounds. The scientific novelty of the paper is in the use of an ensemble of models including probabilistic and statistical models in the form of Bayesian network and regression models, in the system of actuarial calculations of mandatory state pension insurance.
The paper considers several scenarios for the impact of pollutants on the growth of number of pension recipients. The indicator of the share of expenditures on social protection and social security of the population in the gross national product was chosen as the target variable of the process under study. Mathematical models were found to be adequate to the modeling process, and the Bayesian network classification error is about 20%. The model structure is built in Genie 2.0 modeling system. The principal component analysis, is used to reduce the data dimension. The proposed methodology can also be applied to other tasks of forecasting social protection and social security expenditures.

References

Dubinina, S.V., & Bidiuk, P.I. (2017). Zastosuvannya metodiv intelectualnogo analizu danyh intelectualnogo analizu do rozv’azannya zadach aktuarnogo modeluvannya ta otzinuvannya finansovyh ryzykiv. Systemny doslidgenya ta infornatsiyni tehnologii, 1, 49–64. https://doi.org/10.20535/SRIT.2308-8893.2017.1.04 [in Ukrainian].

Czernicki, D. How cloud computing transforms actuarial modeling infrastructure. Retrieved from: https://www.ey.com/en_us/insights/insurance/cloud-computing-implications-for-actuarial-modeling

Larochelle, J.-P., Carlson, P., Cote, V. C., Lu, Y., Shapiro, N., Tam, A., Thusu, V., & Zhang, A. (2023). Predictive Analytics and Machine Learning. Practical Applications for Actuarial Modeling (Nested Stochastic). Schaumburg: Society of Actuaries. Research Institute. Retrieved from https://www.soa.org/49ae74/globalassets/assets/files/resources/research-report/2023/predictive-analytics-and-machine-learning.pdf

Iyer, S. (2008). Stochastic Actuarial Modelling of a Defined-Benefit Social Security Pension Scheme: An Analytical Approach. Annals of Actuarial Science, 3(1-2), 127-185. https://doi.org/10.1017/S174849950000049X

McCrea, R., King, R., Graham, L., & Börger, L. (2023). Realising the promise of large data and complex models. Methods in Ecology and Evolution, 14(1), 4-11. https://doi.org/10.1111/2041-210X.14050

Frees, E.W. (2010). Regression Modeling with Actuarial and Financial Applications. New York: Cambridge University Press.

Gupta, R.Y., Mudigonda, S.S., Baruah, P.K., & Kandala, P.K. (2020). Implementation of Correlation and Regression Models for Health Insurance Fraud in Covid-19 Environment using Actuarial and Data Science Techniques. International Journal of Recent Technology and Engineering (IJRTE), 9(3), 699-706. https://doi.org/10.35940/ijrte.C4686.099320

Karaeva, N.V. (2018). Metodologichny aspekty ta programni zasoby orzinky riziku zdorov’u naselennya pry nespriyatlyvomu vplivy daktoriv navkolyshnyogo seredovysa. Systemy upravlinnya, navigatzii ta zv’yazku, 1(47), 164-169. https://doi.org/10.26906/SUNZ.2018.1.164 [in Ukrainian].

Estill, Ya. Vplyv na zdorov’ya ta sotzialny vytraty, pov’yazany iz zabrudnennyam povitrya u velykyh mistah Ukrainy. United Nations Development Programme. Report. Retrieved from: https://www.undp.org/sites/g/files/zskgke326/files/2023-03/Health%20impacts%20and%20social%20costs%20associated%20with%20air%20pollution%20in%20larger%20urban%20areas%20of%20Ukraine%20%28UA%29.pdf [in Ukrainian].

Proekt «Vsesvitniy index yakosti povitrya». Retrieved from: https://aqicn.org and https://waqi.info [in Ukrainian].

González Parra, G., & Arenas, A.J. (2014). A mathematical model for social security systems with dynamical systems. Ingeniería Y Ciencia, 10(19), 33–53. https://doi.org/10.17230/ingciencia.10.19.2

Iyer, S. (1999). Actuarial mathematics of social security pensions. International Labour Organization. Retrieved from: https://www.issa.int/sites/default/files/documents/publications/2Actuarial_mathematics_of_ss_pensions_en-29172.pdf

Lähderanta, T., Salonen, J., Möttönen, J., & Sillanpää, M.J. (2022). Modelling old-age retirement: An adaptive multi-outcome LAD-lasso regression approach. International Social Security Review, 75(1), 3-29. https://doi.org/10.1111/issr.12287

Black, E., Lattyak, C.G., Chairperson, V., & Stone, L.K. (2023). Senior Pension Fellow Modeling – for Pension Actuaries. Washington: The American Academy of Actuaries. Retrieved from: https://www.actuary.org/sites/default/files/2023-01/Modeling_Practice_ Note.pdf

Global Burden of Disease. Retrieved from: https://www.healthdata.org/research-analysis/gbd

Postanova Kabinetu Ministriv Ukrainy vid 16 grudnya 2004 r. № 1677 «Metodyka provedennya aktuarnyh rozrahunkiv u systemi zagaknoobov’yazkovogo derzavnogo pebsiynogo strahuvanya». Retrieved from: https://www.kmu.gov.ua/npas/10301286

Trofymchuk, O., Bidiuk, P., Terentiev, O., & Prosyankina-Zharova, T. (2019). Decision Support Systems for Modelling, Forecasting and Risk Estimation. Riga: LAP Lambert Academic Publishing.

Shapovalenko, N. (2021). A Suite of Models for CPI Forecasting. Visnyk of the National Bank of Ukraine, 252, 4-36. https://doi.org/10.26531/vnbu2021.252.01

Bidiuk, P.I., Romanenko, V.D., & Tymoszhuk, O.L. (2013). Analyz chasovyh ryadiv. Kyiv: NTUU KPI [in Ukrainian].

Seber, G.A.F., & Wild, C.J. (1989). Nonlinear Regression. New York: John Wiley & Sons, Inc.

Hurvich, C.M., Simonoff, J.S., & Tsai, C.L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, 60(2), 271–293.

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B.D. (2021). Regression Models, Methods and Applications. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-63882-8

Abubakari, A.G. (2022). Actuarial Measures, Regression, and Applications of Exponentiated Fr´echet Loss Distribution. International Journal of Mathematics and Mathematical Sciences, 2022, 1-17. https://doi.org/10.1155/2022/3155188

Thrane, C. (2020). Applied Regression Analysis Doing, Interpreting and Reporting. New York: Taylor & Francis Group. https://doi.org/10.4324/9780429443756

Grygorkiv, M.V. (2020). Dynamichny modely ekologo-ekonomichnyh system v umovah sotzialno-ekonomichnoi klasteryzatzii: monographia. Ternopil: «Ekonomichna dumka. TNEU» [in Ukrainian].

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge University Press.

Jensen, F.V. (2001). Bayesian networks and decision graphs. New York: Springer. https://doi.org/10.1007/978-1-4757-3502-4

Spiegelhalter, D., Dawid, P., Lauritzen, S., & Cowell, R. (1993). Bayesian analysis in expert systems. Statistical Science, 8 (3), 219–247.

Lauritzen, S. L., & Spiegelhalter, D.J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal Royal Statistics Society, series B (Methodology), 50 (2), 157-194.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction and Search. Part of the book series: Lecture Notes in Statistics (LNS, vol. 81). Berlin: Springer Verlag. https://doi.org/10.1007/978-1-4612-2748-9

Spirtes, P., Glymour, C., & Scheines, R. (1991). From probability to causality. Philosophical Studies, 64, 1–36. https://doi.org/10.1007/BF00356088

Zgurovs'kyj, M.Z., Bidjuk, P.I., Terent'jev, O.M., & Prosjankina-Zharova, T.I. (2015). Bajjesivs'ki merezhi u systemah pidtrymky pryjnjattja rishen'. Kyi'v: TOV «Vydavnyche Pidpryjemstvo «Edel'vejs» [in Ukrainian].

Derzavna sluzba statystyky Ukrainy. Navkolyshnye pryrodne seredovyshe. Retrieved from: https://www.ukrstat.gov.ua [in Ukrainian].

Shodenny ta shomisyachni sposteregenya za zabrudnennyam atmosfernogo povitrya. Retrieved from: https://diia.data.gov.ua/ [in Ukrainian].

Chugaevska, S.V., & Kovtun, N.V. (2022). Osnovy statystychnogo modeluvannya: navch. posibnyk. Gytomyr: Vydavnytstvo PP "Ruta" [in Ukrainian].

Genie 2.0. Retrieved from https://www.bayesfusion.com/genie/

Published

2024-09-30

How to Cite

Zarudnii, O. B. (2024). Usage of intellectual analysis of ecological-economic data in the pension insurance system and for forecasting expenditures on social protection and social security. Environmental Safety and Natural Resources, 51(3), 161–176. https://doi.org/10.32347/2411-4049.2024.3.161-176

Issue

Section

Information technology and mathematical modeling