Forecasting the design maxima water discharges of floods on the Latorica river according to the data of the Mukachevo gauging station using plotting position formulas
DOI:
https://doi.org/10.32347/2411-4049.2024.3.123-140Keywords:
annual exceedance probability, design maxima discharge, epistemic uncertainty, extrapolation, flood, forecasting, observation data, parametric probability distributions, plotting position formulas, rank-weighted estimatesAbstract
This article presents the results of forecasting design maxima discharges on the Latorica River within Mukachevo town based on hydrological observation data at the “Mukachevo” gauging station using plotting position formulas. While solving the task, a novel non-parametric method of forecasting using observation data is applied. The method includes extrapolating the discrepancy (divergence, disagreement) between the estimates of the statistical annual probabilities of exceedance obtained by different plotting position formulas. The task is considered in the frame of the stationarity hypothesis of the maximum river flow employing a time series of maximal discharges of the Latorica River observed at the “Mukachevo” gauging station from 1947 to 1999.
We involved the thirteen plotting position formulas. There was no specific criterion for choosing them to solve the task. All applied formulas were considered admissible options, and results obtained after using them – expert judgments reflecting decision-makers’ predisposition to more cautious or less expensive decision options in flood management strategies.
The epistemic uncertainty of the different plotting positions was reduced by employing the Fishburn rule. According to this rule, the significance of various plotting positions was given by arranging their estimates in descending order of importance of their values under decision-making. Depending on the selected significance option assignment of the different plotting position formulas, such rank-weighted estimates of the design peak discharges (each of them for annual exceedance probability 1%, 0.5%, and 0.2%) were computed: (1) the rank-weighted upper bound estimate (sup-estimate) corresponding to the predisposition to more cautious decision options; (2) the rank-weighted lower bound estimate (inf-estimate) corresponding to the predisposition to less expensive decision options. As possible control theoretical alternatives for forecasting design maximal discharges considered were five parametric probability distributions: 1) the Kritskyi-Menkel three-parameter gamma distribution; 2) Pearson’s type III distribution; 3) the Extreme value type I distribution (Gumbell’s type I distribution); 4) the Logarithmic Pearson type III distribution; and 5) the Two-parameters logarithmic-normal distribution. The population statistical parameters for these parametric probability distributions were estimated from the sample statistics by the method of moments.
References
Ukraine – Vulnerability. Climate Change Knowledge Portal. Available from https://climateknowledgeportal.worldbank.org/country/ukraine/vulnerability.
Flood protection of territories. United Nations Development Programme. UNDP in Ukraine. Available from https://www1.undp.org/content/dam/ukraine/docs/EE/Flood.
Stefanyshyn, D.V. (2022). What could we have learnt from the previous flood data to predict losses caused by the 1980, 1986, and 1998 catastrophic floods in Ukrainian Transcarpathian? Environmental safety and natural resources, 43(3), 81–109; https://doi.org/10.32347/2411-4049.2022.3.81-109.
Stoyko, S.M. (2002). The causes of catastrophic floods in the Transcarpathian region and the system of ecological prophylactic measures for their prevention. TISCIA monograph series, 6, 17–28.
Lukianets, O., Malytska, L., and Moskalenko, S. (2020). Maximum Riverine Runoff in the Basin of Tysa and Prut within Ukraine. In: Proceedings of the XXVIIІ Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management (Kyiv, November 6-8, 2019). Edited by V. Osadchiy, et al. Kyiv, Nika-Tsentr; https://doi.org/10.15407/uhmi.conference.01.18, Corpus ID: 228979870.
Didovets, I., Lobanova, A., Bronstert, A., Snizhko, S, Fox Maule, C, and Krysanova, V. (2017). Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling. Water, 9, 204; https://doi.org/10.3390/w9030204.
Susidko, M.M., and Lukyanets, O.I. (2004). Zoning of the territory of Ukraine according to the degree of hydrological danger. UkrNDGMI, Issue 253, 196–204. (In Ukrainian) [Сусідко М.М., Лук’янець, О.І. (2004). Районування території України за ступенем гідрологічної небезпеки. УкрНДГМІ, Вип. 253, 196–204].
Sub-Basin Level Flood Action Plan for Tisza River Basin. (2009). Int. Commission for the Protection of the Danube River (ICPDR), Flood Protection Expert Group, 52 p. Available from https://www.icpdr.org/main/sites/default/files/FAP09_Tisza.pdf.
Lukіanets, O., Moskalenko, S. (2019). Generalization and multi-annual variability of the maximum annual runoff river water in accordance with the hydrographic zoning of Ukraine. Hidrolohiiа, hidrokhimiiа i hidroekolohiiа, № 2 (53), 6–20. (In Ukrainian) [Лук’янець, О.І., Москаленко, С.О. (2019). Узагальнення та багаторічна мінливість максимального річного стоку води річок відповідно до гідрографічного районування України. Гідрологія, гідрохімія і гідроекологія, Т. 2 (53), 6–20].
Gönczy, S., Fodor, G., Oláh, N., Nagy, T., Ésik, Z., and Szepesi, J. (2020). Geoheritage Values of the Northeastern Carpathians, Transcarpathia, Ukraine. Geoconservation Research, Vol. 3, Issue 2, 32–48; https://doi.org/10.30486/gcr.2020.1904340.1026.
Kirilyuk, M.I. (2001). Regime of formation of historical floods in the Ukrainian Carpathians. Environmental aspects of the formation of small rivers (problem analysis). Hydrology, hydrochemistry and hydroecology. [Resp. ed. V.K., Khilchevsky]. Kyiv, Nika-Center, Vol. 2, 146–156. (In Ukrainian) [Кирилюк, М.І. (2001). Режим формування історичних паводків в Українських Карпатах. Екологічні аспекти русло формування малих річок (аналіз проблеми). Гідрологія, гідрохімія і гідроекологія. [Відп. ред. В.К. Хільчевський]. Київ, Ніка-Центр, Т. 2, 146–156].
Konovalenko, O.S. (2016). Latorica. Encyclopedia of Modern Ukraine. Ed.: I.M. Dzyuba, A.I. Zhukovsky, M.G. Zheleznyak [and others]; National Academy of Sciences of Ukraine, Institute of Encyclopedic Research of the National Academy of Sciences of Ukraine. Available from https://esu.com.ua/article-53425. (In Ukrainian) [Коноваленко, О.С. (2016). Латориця. Енциклопедія Сучасної України. Редкол.: І.М. Дзюба, А.І. Жуковський, М.Г. Железняк [та ін.]; НАН України, НТШ, Інститут енциклопедичних досліджень НАН України].
Thematic maps of the Danube River Basin. Social and Economic Characteristics with particular attention to Hot Spots, Significant Impact Areas and Hydraulic Structures. (1999). Programme Coordination Unit UNDP/GEF Assistance. Zinke Environment Consulting for Central and Eastern Europe and Mihaela Popovici, Vienna, Austria; https://www.icpdr.org/sites/default/files/TA_THEMATIC_MAPS.pdf.
Flood issues and climate changes – Integrated Report for Tisza River Basin. (2018). Danube Transnational Programme JOINTISZA. Deliverable 5.1.2. https://www.interreg-danube.eu/uploads/media/approved_project_output/0001/36/49d50d0b2429884b0a1f2eafc8c158b70bc31679.pdf.
Obodovsky, O., Onyschuk, V., Rozlach, Z. et all. (2012). Latorica: hydrology, hydromorphology, channel processes. Kyiv National University, Kyiv, “Rivers of the Carpathians” Series. (In Ukrainian) [Ободовський, О.Г., Онищук, В.В., Розлач, З.В. та ін. (2012). Латориця: гідрологія, гідроморфологія, руслові процеси. Монографія. [За ред. О.Г. Ободовського], Київ, Видавничо-поліграфічний центр «Київський університет», Серія «Річки Карпат»].
Leta, V.V., Mykyta, M.M., Salyuk, M.R., Feketa, I.Yu., and Melnychuk, V.P. (2022). Water use in the Latoritsa river basin: condition and optimization. Hydrology, Hydrochemistry and Hydroecology, No. 1 (63), 30-39; DOI: https://doi.org/10.17721/2306-5680.2022.1.3. (In Ukrainian) [Лета, В.В., Микита, М.М., Салюк, М.Р., Фекета, І.Ю., Мельничук, В.П. (2022). Водокористування у басейні річки Латориця: стан та оптимізація. Гідрологія, гідрохімія та гідроекологія, № 1 (63), 30–39].
Kozak, O., and Didukh, Y. (2014). Assessment of mountain ecosystems changes under anthropogenic pressure in Latorica river basin (Transcarpathian region, Ukraine). Ekológia (Bratislava), Vol. 33, No. 4, 365–379; https://doi.org/10.2478/eko-2014-0033.
Central Geophysical Observatory named after Boris Sreznevsky. Available from http://cgo-sreznevskyi.kyiv.ua/index.php?lang=en&dv=main.
Stedinger, J.R., Vogel, R.M. and Foufoula-Georgia, E. (1993). Frequency Analysis of Extreme Events. Chapter 18. In Maidment, D.R., Ed., Handbook of Hydrology, McGraw Hill, New York, 18.1-18.66.
Cunnane, C. (1978). Unbiased plotting positions – A review. Journal of Hydrology, Vol. 37, Issues 3-4, 205–222; https://doi.org/10.1016/0022-1694(78)90017-3.
Apel, H., Merz, B., Thieken, and A.H. (2008). Quantification of uncertainties in flood risk assessments. International Journal of River Basin Management (JRBM), Vol. 6, No. 2, 149–162; https://doi.org/10.1080/15715124.2008.9635344.
Stefanyshyn, D.V. (2021). Probability assessment of the Kyiv reservoir overflow. Environmental safety and natural resources, 40 (4), 73–99; https://doi.org/10.32347/2411-4049.2021.4.73-99.
Anghel, C.G., Stanca, S.C., Ilinca, C. (2023). Extreme Events Analysis Using LH-Moments Method and Quantile Function Family. Hydrology, 10, 159; https://doi.org/10.3390/hydrology10080159.
Review of Applied-Statistical Methods for Flood-Frequency Analysis in Europe. (2012). Editors: Castellarin, A., Kohnová, S., Gaál, L., Fleig, A., Salinas, J.L., Toumazis, A., Kjeldsen, T.R., and Macdonald, N. NERC/Centre for Ecology & Hydrology, 122 p. Available from https://nora.nerc.ac.uk/id/eprint/19286/.
Ren, M., He, X., Kan, G., Wang, F., Zhang, H., Li, H., Cao, D., Wang, H., Sun, D., Jiang, X., Wang, G., and Zhang, Z. (2017). A Comparison of Flood Control Standards for Reservoir Engineering for Different Countries. Water, 9, 152; https://doi.org/10.3390/w9030152.
Makkonen, L. (2006). Plotting Positions in Extreme Value Analysis. Journal of Applied Meteorology and Climatology, Vol. 45, 334–340; https://doi.org/10.1175/JAM2349.1.
Ahmad Shukri Yahaya, Norlida Md. Nor, Nor Rohashikin Mat Jali, Nor Azam Ramli, Fauziah Ahmad, and Ahmad Zia Ul-Saufie (2012). Determination of the Probability Plotting Position for Type I Extreme Value Distribution. Journal of Applied Sciences, 12, 1501–1506; https://doi.org/10.3923/jas.2012.1501.1506.
Ologhadien, I. (2021). Study of Unbiased Plotting Position Formulae for the Generalized Extreme Value (GEV) Distribution. European J. of Eng. and Technology Research, Vol. 6, Issue 4, 94–99; DOI: http://dx.doi.org/10.24018/ejers.2021.6.4.2468.
Van der Spuy, D., and du Plessis, J.A. (2022). Flood frequency analysis – Part 2: Development of a modified plotting position. Water SA 48(2), 120–33; https://doi.org/10.17159/wsa/2022.v48.i2.3848.2.
Stefanyshyn, D.V. (2023). Testing a numerically-analytical method for prediction design maxima discharges of floods using plotting position formulas: the river Uzh case, the “Uzhhorod” gauging station data, Environmental safety and natural resources, 46:2, 138–162; https://doi.org/10.32347/2411-4049.2023.2.138-162.
Stefanyshyn, D.V. (2023). A Design Water Discharge Maxima Forecasting Method Based on Observation Data Using Plotting Position Formulas, in: Proceedings of the International scientific and practical conference “Modeling, Control and Information Technologies”, 6, 199–202; https://doi.org/10.31713/MCIT.2023.061.
Hossein Hassani, H., and Silva, E.S. (2015). Forecasting with Big Data: A Review. Ann. Data. Sci., 2(1), 5–19; https://doi.org/10.1007/s40745-015-0029-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 D.V. Stefanyshyn

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Environmental safety and natural resources» works under Creative Commons Attribution 4.0 International (CC BY 4.0).
The licensing policy is compatible with the overwhelming majority of open access and archiving policies.