Ensuring the normalization of the aero-ionic regime in production areas by means of ultrasonic air ionization

Authors

DOI:

https://doi.org/10.32347/2411-4049.2024.3.88-101

Keywords:

aeroionic mode, balloelectric effect, ultrasonic cavitation, working area, production facility

Abstract

The results of studies on the normalization of the aeroionic regime in rooms under ultrasonic ionization of humidified air are presented. The increase in the concentration of negative aeroions under these conditions by the combined effect of the balloelectric effect and ultrasonic cavitation is substantiated. It has been established that when distilled water is used as a source of air ions under the action of a 10 W ultrasonic generator at a distance of 0.5 m, the concentration of negative air ions increases almost sixfold. At the same time, due to the joint effect of ultrasonic cavitation in the surface layer of water and the balloelectric effect, no generation of ozone and nitrogen oxides is caused. It is proved that with a decrease in the degree of water mineralization, the concentrations of negative and positive aeroions increase due to changes in the physicochemical properties of water and the resulting mechanochemical phenomena. The mechanism of formation of air ions in the air of industrial premises under the combined action of the balloelectric effect and ultrasound is proposed. It is substantiated that the quality of the air ionic composition of industrial premises air improves at a temperature of demineralized water of 20-25 °C and a directed air flow of 6 m/s towards the working area with the combined effect of ultrasound and balloelectric effect, which contributes to the improvement of sanitary and hygienic working conditions. The structure of an automated system for controlling the aeroionic regime of the working area of industrial premises with artificial ionization of humidified air using an aeroion generator and a ventilation system is proposed. This will allow monitoring and processing of information on technological, electrical and microclimatic parameters, adjusting, coordinating and jointly controlling the ventilation system devices and the ultrasonic generator of air ions.

References

Gliva, V. (2011). Doslidzhennya vplivu mіkroklimatichnih parametriv povitroobminu na aeroіonniy sklad povitrya robochih primischen. Problemi ohoroni pratsi v Ukrayini, 20, 58–65 [in Ukrainian].

Laktionov, I., Vovna, O., Cherevko, O., & Kozlovskaya, T. (2018). Mathematical model for monitoring carbon dioxide concentration in industrial greenhouses. Agronomy Research, 16(1), 134–146. http://dx.doi.org/10.15159/ar.17.074 [in Ukrainian].

Nazarenko, V. I., Tereschenko, P. S., & Paliychuk, S. P. (2014). Fiziologo-gigienichna otsinka mikroklimatu suchasnih ofisnih primischen ta adaptatsiyni reaktsiyi organizmu ofisnih pratsivnikiv. Ukrayinskiy zhurnal z problem meditsini pratsi, 2, 41–47.

Fletcher, L. A., Noakes, C. J., & Sleigh, P. A. (2008). Air ion behavior in ventilated rooms. Indoor and Built Enviroment, 17, 2, 173–183.

Laktionov, I., Vovna, O., & Zori, A. (2017). Copncept of low cost computerized measuring system for microclimate parameters of greenhouses. Bulgarian Journal of Agricultural Science, 23, 4, 668–673.

Magnier-Bergeron, L., Derome, D., & Zmeureanu R. (2017). Three-dimensional model of air speed in the secondary zone of displacement ventilation jet. Building and Environment, 114, 483–494.

Zaporozhets, O. I., Sukach, S. V., Galagan, O. G., & Kozlovska, T. F. (2017). Viznachennya parametriv optimalnoyi komfortnosti u robochoyi zoni primischennya za pokaznikami povitryanogo seredovischa. Visnik Kremenchutskogo natsionalnogo universitetu imeni Mihayla Ostrogradskogo, 1(102), 17–21 [in Ukrainian].

Chan-oh Min (2011). Control of approach and landing phase for reentry vehicle using fuzzy logic. Aerospace Science and Technology, 15, 269–282.

Atiencia, Villagomez J. M., Diveev, A. I., & Sofronova, E. A. (2012). The Network Operator Method for Synthesis of Intelligent Control System. Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 169–174.

Serhiienko, I., Serhiienko, S., & Zagirnyak, M. (2017). Improvement of the qualitative characteristics of an automatic control system with a fractional-order PID-controller. Proceedings of 18th International Conference Computational Problems of Electrical Engineering (CPEE), 1–4. https://doi.org/10.1109/CPEE.2017.8093062

Prakash, J., & Jayasurian, S. R. (2013). Design and Implementation of Fractional-Order Controller for Fractional Order System. Recent Advancements in System Modelling Applications, 188, 319–326.

Sukach, S. V., & Sidorov, O. V. (2016). Metodologichni zasadi pidvischennya yakosti kontrolyu aeroIonnogo skladu povitrya virobnichogo seredovischa. Problemi ohoroni pratsi v Ukrayini, 32, 127–133 [in Ukrainian].

Akimenko, V. Ya., & Harchenko, S. O. (2008). Inzhenerno-tehnichne obladnannya yak potentsiyne dzherelo gidroaerozolnogo zabrudnennya povitrya. Aktualni pitannya gigieni ta ekologichnoyi bezpeki Ukrayini: zbir. tez dopovidey naukovo-praktichnoyi konferentsiyi, 8, 11-12 [in Ukrainian].

Peter Wallner, Michael Kundi, Michael Panny, Peter Tappler, & Hans-Peter Hutter (2015). Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults. Int. J. Environ. Res. Public. Health, 12, 11, 14301–14311. https://doi.org/10.3390/ijerph121114301

Untersuchungen zum Einfluss von Wandbeschichtungen auf die Ionenzahl und das Verhalten von Partikeln in der Raumluft. Retrieved 2018, 29 July from http://www.innenraumanalytik.at/pdfs/fraunhofer_ionen.pdf

Tolkunov, I. O., & Popov, I. I. (2011). Vpliv prirodnih dzherel aeroionizatsiyi na protses formuvannya poliv kontsentratsiyi aeroioniv u povitryanomu seredovischi primischen. Zbirnik naukovih prats Harkivskogo universitetu Povitryanih Sil, 1, 27, 243–246 [in Ukrainian].

Kolarz, P., Gaisberger, M., Madl, P., Hofmann, W., Ritter, M., & Hartl A. (2012). Characterization of ions at Alpine waterfalls. Atmos. Chem. Phys., 12, 3687–3697.

Chencheva, O., Lashko, Ye., Rieznik, D., Perekrest, A., & Bozhyk, M. (2023). Development and research of the functional possibilities of the automated fuzzy indoor air quality management system of production premises. Labour Protection Problems in Ukraine, 39(3-4), 36–42 [in Ukrainian].

Chenchevoi, V., Danova, K., Chencheva, O., Perekrest, A., & Hrigorieva, D. (2020). Scientific substantiation of optimization of hydroaeroine air composition in public premises for persons with special needs. Labour Protection Problems in Ukraine, 36(4), 8–15 [in Ukrainian].

Chenchevoi, V., Sukach, S., Chencheva, O., & Hrigorieva, D. (2020). Doslidzhennia parametriv hidroionnoho skladu poviatria robochoho prymishchennia z ultrazvukovoiu ionizatsiieiu. Journal of Donetsk Mining Institute, 2(74), 168–173 [in Ukrainian].

Published

2024-09-30

How to Cite

Sukach, S. V., Chencheva, O. O., Kozlovska, T. F., Lashko, Y. Y., Rieznik, D. V., & Tkachuk, K. K. (2024). Ensuring the normalization of the aero-ionic regime in production areas by means of ultrasonic air ionization. Environmental Safety and Natural Resources, 51(3), 88–101. https://doi.org/10.32347/2411-4049.2024.3.88-101