Prospects of designing small architectural forms using alternative energy sources
DOI:
https://doi.org/10.32347/2411-4049.2021.1.44-54Ключові слова:
public transport stop, energy efficiency, solar panels, archetypeАнотація
The energy efficiency of the transport system is one of the key issues in the concept of sustainable development of modern cities. Increasing energy efficiency in the transport sector implies increasing the efficiency of the entire transport sector: from modernizing vehicles to introducing energy-efficient comfortable stops for public transport into the city system. One of the problems of modern architecture of large cities is the creation of a unified architecture of small architectural forms (SAF), namely, stops of urban public transport. They should not only have a modern design, but also be comfortable, functional, safe and energy efficient. In the article, the authors propose a unified urban archetype for an energy-efficient public transport stop for the city of Kyiv. Energy efficiency is achieved by installing solar panels on the roofs of the SAF. During the placement of the bus stop, it is imperative to take into account the shading from nearest buildings located on the south, south-east and south-west sides. Depending on the orientation of the roof of the stop to the cardinal points and the type of solar panels, it can generate about 2030 kW∙h/year (west orientation) – 2269.9 kW∙h/year (south orientation) of electricity. The maximum deviation from the averaged equal-percentage value (2143.16 kW∙h/year) related to the actual data between the maximum and minimum of generation is only 5.55%. This is explained by the angle of photovoltaic panels, which is optimized for universal use. The proposed archetype is energy efficient, functional, and therefore can be taken as a basis for mass placement in the city.
Посилання
Earth Overshoot Day 2019 is July 29th, the earliest ever. (2019). Retrieved 02.10.2020 from: https://www.footprintnetwork.org/2019/06/26/press-release-june-2019-earth-overshoot-day/
Strategy of low-carbon development of Ukraine until 2050. (2017). Retrieved 02.10.2020 from: https://mepr.gov.ua/files/docs/Проект%20Стратегії%20низьковуглецевого%20розвитку%20України%20.pdf.
Sambor, D.J., Wilber, M., Whitney E., & Jacobson, M.Z. (2020). Development of a Tool for Optimizing Solar and Battery Storage for Container Farming in a Remote Arctic Microgrid. Energies, 13(5143), 5143.
Gira, N., & Dahiya, A.K. (2020). Solar PV-BES in distribution system with novel technique for DC voltage regulation. Engineering Science and Technology, an International Journal, 23(5), 1058-1067.
Jbari, Y., & Abderafi, S. (2020). Parametric study to enhance performance of wastewater treatment process, by reverse osmosis-photovoltaic system. Applied Water Science, 10(10), 1-14.
Jou, H.-L., Wu, J.-C., Zhang, T.-Y., & Shih, S.I. (2020). New power conversion topology for battery-less PV generation system with the functions of grid-connection and isolated grid. Engineering Science and Technology, an International Journal, 23(5), 1074-1083.
Lorenzo, C., Narvarte, L., & Cristóbal, A.B. (2020). A Comparative Economic Feasibility Study of Photovoltaic Heat Pump Systems for Industrial Space Heating and Cooling. Energies, 13(4114), 4114.
Prem, P., Sivaraman, P., Sakthi Suriya Raj, J.S., Jagabar Sathik, M., & Almakhles, D. (2020). Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station. Automatika, 61(4), 614-625.
Senthil, S. (2020). Effect of charging of phase change material in vertical and horizontal rectangular enclosures in a concentrated solar receiver. Case Studies in Thermal Engineering, 21, 100653.
Shaqour, A, Farzaneh, H., Yoshida, Y., & Hinokuma, T. (2020). Power control and simulation of a building integrated stand-alone hybrid PV-wind-battery system in Kasuga City, Japan. Jurnal Energy Reports, 6, 1528-1544.
Sikder, P.S., & Pal, N. (2020). Modeling of an intelligent battery controller for standalone solar-wind hybrid distributed generation system. Journal of King Saud University: Engineering Sciences, 32(6), 368-377.
Sinambela, M., Situmorang, M., Tarigan, K., Humaidi, S., & Rahayu, T. (2020). Design of solar power system for the new mini region of broadband seismometer shelter in Tiganderket, Karo, North Sumatera, Indonesia. Journal Case Studies in Thermal Engineering, 22, 100747.
Sobol, Ł., & Dyjakon, A. (2020). The Influence of Power Sources for Charging the Batteries of Electric Cars on CO2 Emissions During Daily Driving: A Case Study from Poland. Energies, 13(4267), 4267.
Wei, Li, Jikang, Li, Zhenzhong, Hu, Sunwei, Li, & Chan P.W. (2020). A Novel Probabilistic Approach to Optimize Stand-Alone Hybrid Wind-Photovoltaic Renewable Energy System. Energies, 13(4945), 4945.
Voloshkina, О., Tkachenko, T., Sipakov, R., & Tkachenko, O. (2019). The estimation and reduction of risks cauced by air pollution in cities. Budownictwo o zoptymalizowanym Potencjale energetycznym [Construction of optimized energy potential], 8(2), 17-25. https://doi.org/10.17512/bozpe.2019.2.02
Beler-Bedecker, S., & Huyging, H. (2013). Urban transport and energy efficiency. Retrieved 05.10.2020 from: http://greenlogic.by/content/files/dad357e3aecd74d42c89c14e4d4fb872.pdf
Tkachenko, T., Mileikovskyi, V., & Ujma, A. (2018). Field Study of Air Quality Improvement by a “Green Roof” in Kyiv. In R. Ulewicz & R. R. Nikolic (Eds.), 7th International Conference System Safety: Human - Technical Facility - Environment (CzOTO 2018) (pp. 419–424). Warszawa: De Gruyter. doi: https://doi.org/10.2478/czoto-2019-0054
Itriashvili, L., Iremashvili, I., Khosroshvili, E., Ujma, A. (2018). Noviy mnogocelevoy polimernyj kompozit i oblasti jego primenenia. Budownictwo o zoptymalizowanym potencjale energetycznym, 1(21), 77-82.
Strategy of sustainable development of Ukraine until 2030 (project-2017).
Draft decision of the Kyiv City Council "About the approval of the Concept of placement of public transport stops in Kyiv". (2019). Retrieved 05.10.2020 from: https://kga.gov.ua/rss/200-proekt-rishennya-kijivradi-pro-zatverdzhennya-kontseptsiji-rozmishchennya-zupinok-gromadskogo-transportu-v-m-kievi
Bus boffins solar stops even work in UK winter, 2005. Retrieved 05.10.2020 from: https://tfl.gov.uk/info-for/media/press-releases/2005/september/bus-boffins-solar-stops-even-work-in-uk-winter.
Kyivpastrans. (2016). Retrieved 05.10.2020 from: https://ecotechnica.com.ua/arkhitektura/975-kiev-obzavelsya-umnoj-ostanovkoj-na-solnechnykh-panelyakh.html
BG Solar panels have appeared in Kyiv. (2017). Retrieved 05.10.2020 from: https://bzh.life/gorod/v-kieve-poyavilis-ostanovki-s-solnechnymi-batareyami.
Kulesh, S. (2015). Kiev public transport stops will be equipped with Wi-Fi and phone chargers. Retrieved 05.10.2020 from: https://itc.ua/news/kievskie-ostanovki-obshhestvennogo-transporta-osnastyat-wi-fi-i-zaryadkami-dlya-telefonov/.
Guide: how to audit electricity in a private home or with your own hands. (2015). Retrieved 05.10.2020 from: http://term.od.ua/blog/rukovodstvo-audit-elektroenergii-v-chastnom-dome-svoimi-rukami/.
Kiev, Ukraine – Sunrise, sunset, dawn and dusk times, table. (2020). Retrieved 05.10.2020 from: https://www.gaisma.com/en/location/kiev.html.
Construction climatology. DSTU-N B B.1.1-27: 2010. (2011). Ukraine, Kyiv.
Solar Power Calculator. Retrieved 05.10.2020 from: https://powercalculator.ibc-solar.com/.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Тetiana Tkachenko, Oleksii Tkachenko, Olena Voloshkina, Adam Ujma
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Збірник «Екологічна безпека та природокористування» працює у рамках міжнародної ліцензії Creative Commons Attribution («із зазначенням авторства») 4.0 International (CC BY 4.0).
Ліцензійна політика журналу сумісна з переважною більшістю політик відкритого доступу та архівування матеріалів.