The modeling of different scale hydrologic processes in aquatories

Authors

  • Volodymyr A. Voskoboinick Institute of Hydromechanics of the NASU, Kyiv, Ukraine https://orcid.org/0000-0003-2161-6923
  • Oleksandr A. Voskoboinyk Institute of Hydromechanics of the NASU, Kyiv, Ukraine
  • Dmytro I. Cherniy Institute of Telecommunications and Global Information Space of the NASU, Kyiv, Ukraine

DOI:

https://doi.org/10.32347/2411-4049.2019.1.87-98

Keywords:

razversk, vortex structure, erozed soil

Abstract

The results of mathematical and physical modeling of global and local hydrological processes in the water area are presented. By the method of mathematical modeling revealed variability of large-scale circulatory flow and mass transfer in a water-restricted area with complex obstacles.
In laboratory conditions, by experimental methods, in the hydrodynamic tray, on the channel and the laboratory stand, detected of local hydrodynamic processes and mass transfer around local obstacles - three-row fuel burner rafts. Mechanisms of formation of erosion and transfer of the soil near and within the single and group structures of the grillages located on the laundering sandy bottom of the channel are revealed.

Author Biographies

Volodymyr A. Voskoboinick, Institute of Hydromechanics of the NASU, Kyiv

D.S., Associate Professor, Leading Scientist

Oleksandr A. Voskoboinyk, Institute of Hydromechanics of the NASU, Kyiv

PhD, Senior Research Associate

Dmytro I. Cherniy, Institute of Telecommunications and Global Information Space of the NASU, Kyiv

PhD, Associate Professor, Principle Investigator

References

Ivanov, V. A., & Fomin, V. V. (2008). Mathematical modeling of dynamic processes in the sea - land. Sevastopol: National Exhibition Center "EKOSI-Gidrofizika" (in Russian).

Cherni, D. I. (2016). Mathematical model of the flow in the shallow water area. Bulletin of Kharkiv National University of V.N. Karazina, (29), “Мat. fashion model. Іnformacion technology. Аutomation systems management”, 78-86 (in Russian).

Cherniy, D. I., Voskoboynik, V. A., & Voskoboynik, O. A. (2016). Experimental and mathematical modeling of layered flows in a flat channel. In Naukovo-practical conference “Comp'yuterna gіdromekhanіka” (pp. 68-69). Kyiv, Ukraine: Institute of gidromekhanіki NAN Ukraine (in Russian).

Kordas, O., Gourjii, A., Nikiforovich, E. & Cherniy, D. (2017). A study on mathematical short-term modelling of environmental pollutant transport by sea currents: The Lagrangian approach. Journal of Environmental Accounting and Management, 5(2), 87-104. doi: 10.5890/jeam.2017.06.002

Dovgy, S. A., Lifanov, I. K., & Cherniy, D. I. (2016). The method of singular integral equations and computational technologies. Kyiv: Euston Publishing House (in Russian).

Dovgiy, S. O., Lyashko, S. I., & Cherniy, D. I. (2017). Algorithms of Discrete Singularities Method of Computational Technologies. Cybernetics and System Analysis, (6), 147-159 (in Ukrainian).

Cherniy, D., Dovgiy, S., & Meleshko, V. (2013). The Vortex Model of a Viscid Wall’s Layer. In IUTAM Symposium on ”Vortex Dynamics: Formations, Structure and Function” (pp. 126-127). Fukuoka, Japan: Kyushu University School of Medicine.

Guan, D., Chiew, Y., Wei, M., & Hsieh, S. (2019). Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Intern. J. Sedim. Res, 34(2), 118-124.

Koken, M. (2018). Coherent structures at different contraction ratios caused by two spill-through abutments. J. Hydraul. Res., 56(3), 324-332.

R. Ettema G. , B.W., R., Constantinescu, G., & Melville, B. W. (2017). Field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch. J. Hydraul. Eng., 143(3) 03117006-1-14.

Baghbadorani, D. A., Ataie-Ashtiani, B., & Beheshti, A. (2018). Prediction of current-induced local scour around complex piers: Review, revisit, and integration. Coastal Eng., 133(3), 43-58.

Yang, Y., Qi, M., Li, J., & Ma, X. (2018). Evolution of hydrodynamic characteristics with scour hole developing around a pile group. Water, 10(11), 1632-1-21.

Voskoboinick, A. A., Voskoboinick, А. V., & Voskoboinick, V. А. (2008). Vizualizacija soprjazhennogo obtekanija gruppovoi mostovoi opory. Visnyk Donetskogo University, (1), ser. А: Pryrodnychi nauky, 219-227 (in Russian).

Voskoboinick, А. V., Voskoboinick, V. А., & Voskoboinick, O. A. (2009). Osoblyvosti vykhrovogo rykhy u sprjazhenii techii mizh grypoju pal’ tryrjadnoi mostovoi opory. Prykladna gidromekhanika, 11(2), 16-29 (in Ukrainian).

Voskoboinick, А. V., Voskoboinick, V. А., & Voskoboinick, O. A. (2008). Sprjazhene obtikannja tryrjadnogo pal’nogo rostverku na plaskii poverkhni. Chastyna 1. Formuvannja pidkovopodibnykh vykhoriv. Prykladna gidromekhanika, 10(3), 28-39 (in Ukrainian).

Voskoboinick, А. V., Voskoboinick, V. А., & Voskoboinick, O. A. (2008). Sprjazhene obtikannja tryrjadnogo pal’nogo rostverku na plaskii poverkhni. Chastyna 2. Prostorovo-chasovi korreljacii ta spektry. Prykladna gidromekhanika, 10(4), 13-25 (in Ukrainian).

Voskobijnyk, A. V., Voskoboinick, V. A., & Voskoboinyk, O. A. (2016). Feature of the vortex and the jet flows around and inside the three-row pile group. In 8th International Conference on Scour and Erosion (ICSE 2016) (pp. 897-903). Oxford, UK.

Voskoboinick, V. A., Voskoboinick, A. V., Areshkovych, O. O., & Voskoboinyk, O. A. (2016). Pressure fluctuations on the scour surface before prismatic pier. In 8th International Conference on Scour and Erosion (ICSE 2016) (pp. 905-910). Oxford, UK.

Published

2019-04-01

How to Cite

Voskoboinick, V. A., Voskoboinyk, O. A., & Cherniy, D. I. (2019). The modeling of different scale hydrologic processes in aquatories. Environmental Safety and Natural Resources, 29(1), 87–98. https://doi.org/10.32347/2411-4049.2019.1.87-98

Issue

Section

Information resources and systems