The early warning systems about landslide hazards in Ukraine


  • Anatolii P. Sirenko Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Київ


Ключові слова:

methodology, hazard early warning, monitoring and numerical modeling


Early warning systems are an effective tool for preventing and mitigating the risks associated with the occurrences of various types of threats (including landslides). The paper presents and describes the concept and practical implementation of the new integrated methodology for early warning systems based on the integration of modern monitoring technologies and comprehensive numerical modeling of an object under study. Designing, testing and operation of monitoring systems of complex and unique construction objects have a lot of difficulties, need system knowledge in several spheres of science and engineering: construction, informational technologies, measuring instruments, systems and algorithms of data processing, programming etc. This information is known only to narrow range of highly qualified specialists that directly participated in designing and installing of the particular monitoring system at the particular construction object. The basic concept of Early Warning System installed on landslides is that the elements at risk, especially people being close from the dangerous area, must have sufficient time to evacuate, if an imminent collapse is expected. Therefore, an effective Early Warning System shall include such four main sets of actions: monitoring of the activity of the observed object, i.e. the data collection and transmission, as well as the equipment maintenance; the analysis and modeling of the observed and studied object; warning, i.e. the dissemination of simple and clear information about the observed object; the effective response of risk exposed elements; full understanding of risks. The examples of the practical application of the proposed integrated methodology to various construction projects and natural and technological systems are given, including 1) Central Livadia Landslide System and Livadia Palace; 2) a system for landslide hazard areas monitoring in the Kharkiv region; and 3) landslides Early Warning System using unmanned aerial vehicles as a specialized monitoring system for shearing deformations.

Біографія автора

Anatolii P. Sirenko, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Київ

Кандидат технічних наук, доцент кафедри динаміки і міцності машин та опору матеріалів Механіко-машинобудівного інституту


Dolina, L.F. (2002). Environmental monitoring and biosphere protection engineering. Part 1. Basics of monitoring. Dnepropetrovsk: Continent L (in Russian).

Kalyukh, Y., Maryenkov, M. et al. (2017). Guidelines for scientific and technical monitoring of buildings and structures: DSTU-N B B.1.2-17: 2016 from 1th April 2017. Kyiv: Minregionbud (in Ukrainian).

Trofimchuk, A.N., Chernij, V.G., & Chernij, G.I. (2006). Nadezhnost' sistem sooruzhenie – gruntovoe osnovanie v slozhnyh inzhenerno-geologicheskih uslovijah [Reliability of systems construction – soil foundation in difficult engineering and geological conditions]. Kyiv: Polіgraf konsaltіng (in Russian).

Kaliukh, I., Trofymchuk, O., Farenyuk, G., Ivanik, O., & Shekhunova, S. (2019). Practical measures fo landslide risk mitigation in the Ukrainian Carpathians. In First EAGE Workshop on Assessment of Landslide and Debris Flows Hazards in the Carpathians (Vol. 2019, pp. 1-5). European Association of Geoscientists & Engineers. doi:

Trofymchuk O., Kaliukh I., Silchenko K., Polevetskiy V., Berchun V., Kalyukh T. (2015) Use Accelerogram of Real Earthquakes in the Evaluation of the Stress-Strain State of Landslide Slopes in Seismically Active Regions of Ukraine. In: Lollino G. et al. (eds) Engineering Geology for Society and Territory - Volume 2. Springer, Cham. doi:

Trofymchuk O., Kaliukh I., Klymenkov O. (2018) TXT-tool 2.380-1.1: Monitoring and Early Warning System of the Building Constructions of the Livadia Palace, Ukraine. In: Sassa K. et al. (eds) Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools. Springer, Cham. doi:

Kaliukh, I., Senatorov, V., Khavkin, O., Polevetskiy, V., Silchenko, K., Kaliukh, T., & Khavkin, K. (2013). Experimental and analytic researches on technical state, design and operation of reinforced concrete anti-landslide structures for seismic dangerous regions of Ukraine. In Proc. fib Symp. TEL-AVIV 2013: Engineering a Concrete Future: Technology, Modeling and Construction. (pp. 625-628).

Farenyuk, G., Kaliukh, I., & Ischenko, Y. (2020). Design and calculation of the geotechnical structures in accordance with the "green building" concept requirements. Science and Construction, 24(2), 19-43 (in Ukrainian). doi:

Kaliukh, I., Fareniuk, G., Trofymchuk, O., Fareniuk, I., & Berchun, Y. (2019). Identification of defects in reinforced concrete piles based on multi-wave reflection. In: Derkowski W., Gwoździewicz P., Hojdys Ł., Krajewski P. (eds). Proc. fib Symp. 2019: Concrete – Innovations in Materials, Design and Structures (pp. 991-998). Fédération Internationale du Béton (fib) – International Federation for Structural Concrete. doi:

Ischenko, Y. (2020). Geotechnical monitoring during reconstruction of the Poshtova Square in Kyiv. Environmental Safety and Natural Resources, 34(2), 111–122 (in Ukrainian). doi: 11. Ishchenko, Y., Slyusarenko, Y., Melashenko, Y., Yakovenko, M., & Ben, І. (2020). Geotechnical monitoring in the conditions of compacted urban development. Science and Construction, 25(3), 13-25 (in Ukrainian). doi:

Lacasse, S. (2013). 8th Terzaghi Oration – Protecting society from landslides – the role of the geotechnical engineer. In The 18th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 15–34). Paris

Sirenko, A.P. (2013). Critical distance between retaining elements for landslides and landslide slopes of Chernivtsi region. Environmental Safety and Natural Resources, 13, 73-76 (in Ukrainian).

Sirenko, A.P. (2019). Formation by optimal on Pareto resolve of the problems of ground-based failure in conditions of seismic danger. Environmental Safety and Natural Resources, 30(2), 113-122 (in Ukrainian). doi:

Sirenko, A.P. (2020). Аssessment of a landslide hazard taking into account seismic impact. Environmental Safety and Natural Resources, 33(1), 59-68 (in Ukrainian). doi:

The Earth crust seismoacoustic monitoring. (1986). Мoscow: Institute of Physics of the Earth of the USSR Academy of Sciences (in Russian).

Syrykh, V.N. (1996). Monitoring of the object fire safety state using an automated system. PhD Thesis (Eng. Sci.) (in Ukrainian).

United Nations International Strategy for Disaster Reduction (UNISDR). (2009). Terminology on Disaster Risk Reduction. Retrieved from:

Di Biagio, E., & Kjekstad, O. (2007). Early Warning, Instrumentation and Monitoring Landslides. In 2nd Regional Training Course, RECLAIM II.

Teza, G., Galgaro, A., Zaltron, N., & Genevois, R. (2007). Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int. J. Remote Sens., 28(16), 3425-3446.

Monserrat, O., & Crosetto, M. (2008). Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm. Remote Sens., 63, 42-154.

Abellán, A., Jaboyedoff, M., Oppikofer, T., & Vilaplana, J. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat. Hazards Earth Syst. Sci., 9, 365-372.

Barla, G., Antolini, F., Barla, M., Mensi, E,. & Piovano, G. (2010). Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol., 116, 218-235.

Barla, G., Antolini, F., Barla, M., & Perino, A. (2013). Key aspects in 2D and 3D modeling for stability assessment of a high rock slope. In Workshops ‘Failure Prediction’ 2013. Austrian Society for Geomechanics, Salzburg.

Casagli, N., Catani, F., Del Ventisette, C., & Luzi, G. (2010). Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides, 7(3), 291-301.

Barla, M., & Antolini, F. (2012). Integrazione tra monitoraggio e modellazione delle grandi frane in roccia nell’ottica dell’allertamento rapido. In Barla G., Barla M., Ferrero A., Rotonda T. (eds). Nuovi metodi di indagine e modellazione degli ammassi rocciosi, MIR 2010, (pp. 211-229). Torino 30th November – 1st December 2010. Pàtron, Bologna, (in Italian).

Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. Eng. Geol., 147-148, 124-136. doi:

Antolini, F. (2014). The use of radar interferometry and finite-discrete modelling for the analysis of rock landslides. PhD Thesis, Politecnico di Torino.

Dixon, N., & Spriggs, M. (2007). Quantification of slope displacement rates using acoustic emission monitoring. Can. Geotech. J., 44(8), 966-976.

Mikkelsen, P. (1996). Chapter 11 – field instrumentation. In A. Turner, R. Schuster (Eds.), Landslides investigation and mitigation (pp. 278-318). Transportation Research Board, Washington.

O’Connor, K., & Dowding, C. (2000). Comparison of TDR and inclinometers for slope monitoring. In Proc. of Geo-Denver 2000. Denver, Colorado.

Kaliukh, Y., & Ishchenko, Y. (2020). Theoretical concept and practical implementation of the new integrated methodology for landslide hazards early warning systems. Science and Construction, 23(1), 3-17 (in Ukrainian). doi:

Kaliukh, I., Fareniuk, G., Fareniuk, I. (2018). Geotechnical Issues of Landslides in Ukraine: Simulation, Monitoring and Protection. In Wu W., Yu HS. (eds) Proceedings of China-Europe Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham. doi:




Як цитувати

Sirenko, A. P. (2021). The early warning systems about landslide hazards in Ukraine. Екологічна безпека та природокористування, 37(1), 83–94.



Інформаційні ресурси та системи