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PREDICTION OF HYDRAULIC RESISTANCE COEFFICIENT USING  

AN ENSEMBLE NEURAL NETWORK ALGORITHM 

 
Abstract. This study presents the development and testing of a computational 

algorithm based on ensemble learning of artificial neural networks for predicting 

the empirical hydraulic resistance coefficient known as the Chézy roughness 

coefficient in open channels. The input data for the model include hydrological and 

hydro-morphological characteristics of the channel: average flow width and depth, 

hydraulic radius, discharge or flow velocity, water surface slope, bed roughness, 

and other parameters influencing flow resistance. The target variable is the Chézy 

coefficient, which must be determined with high accuracy. Ensemble learning 

methods are based on the principle of combining the predictions of several 

individual models to obtain a more reliable and accurate result.  

This study introduces an ensemble approach using artificial neural networks for 

estimating the Chézy roughness coefficient. It expands upon previous research 

focused on empirical estimation of the Chézy coefficient through neural networks, 

which involved the review of existing computational methods, refinement of input 

parameters, and the design of a base model with enhanced architectural complexity. 

The ensemble was implemented, trained, and evaluated using Python programming 

tools. 

A general ensemble model consisting of three homogeneous fully connected neural 

networks is proposed. An algorithm for distributing data among ensemble models is 

proposed. Training subsets for each neural network in the ensemble are formed 

using the Bagging method (Bootstrap Aggregating). A training algorithm for the 

ensemble is developed, where each neural network is trained in parallel on its 

bootstrap sample using the backpropagation method. A forecasting algorithm using 

the trained ensemble is also proposed. Prediction of the empirical Chezy coefficient 

for new, unseen data is performed by aggregating forecasts from all neural 

networks, incorporating an inverse problem approach. The implementation of 

training and prediction algorithms is presented in Python. 

For testing the proposed computational algorithm, field hydrological and hydro-

morphological data from specific sections of the mountain rivers Tysa, Teresva, 

Latorytsia, Opir, Rika, and Chornyi Cheremosh were used. The testing procedure 

involved comparing observed and predicted flow discharges. Performance metrics 

such as absolute error and Nash–Sutcliffe efficiency coefficient were used to assess 

model effectiveness. The proposed ensemble model demonstrated higher accuracy 

and greater prediction stability compared to individual neural networks, confirming 

a typical advantage of the Bagging method. 

Keywords: ensemble learning, artificial neural networks, bagging method, 

prediction, the Chézy roughness coefficient, Python.  
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ПРОГНОЗУВАННЯ КОЕФІЦІЄНТА ГІДРАВЛІЧНОГО ОПОРУ ЗА 

ДОПОМОГОЮ АЛГОРИТМУ АНСАМБЛЕВОЇ НЕЙРОННОЇ МЕРЕЖІ 
 

Анотація. У цьому дослідженні представлено розробку та тестування 

обчислювального алгоритму, заснованого на ансамблевому навчанні штучних 

нейронних мереж, для прогнозування емпіричного коефіцієнта гідравлічного 

опору у відкритих руслах річок, відомого як коефіцієнт шорсткості Шезі. 

Вхідними даними для моделі є гідрологічні та гідроморфологічні 

характеристики русла: середні ширина та глибина потоку, гідравлічний радіус, 

витрата води або швидкість потоку, ухил поверхні води, шорсткість дна та 

інші параметри, що впливають на опір потоку. Цільовою змінною є коефіцієнт 

Шезі, який потрібно визначити з високою точністю. Ансамблеві методи 

навчання ґрунтуються на принципі об’єднання прогнозів декількох 

індивідуальних моделей для отримання більш надійного і точного результату 

обчислень.  

Це дослідження пропонує ансамблевий підхід та розширює попередні 

дослідження, зосереджені на емпіричній оцінці коефіцієнта Шезі за 

допомогою нейронних мереж, які включали огляд існуючих обчислювальних 

методів, уточнення необхідних наборів даних, розробку базової моделі з 

врахуванням ускладнення архітектури нейронної мережі. Для побудови, 

навчання і тестування ансамблю нейронних мереж використані інструменти 

програмування Python.  

Запропоновано загальну модель ансамблю, що складається з трьох 

однорідних повно-зв'язних нейронних мереж. Запропоновано алгоритм 

розподілу даних між моделями ансамблю. Формування навчальних вибірок для 

кожної нейронної мережі ансамблю здійснюється на основі методу беггінгу 

(Bagging). Запропоновано алгоритм навчання ансамблю нейронних мереж. 

Кожна нейронна мережа в ансамблі навчається паралельно на своїй 

bootstrap-вибірці за допомогою методу зворотного поширення похибки. 

Запропоновано алгоритм прогнозування за допомогою навченого ансамблю 

моделей. Прогнозування емпіричного коефіцієнта Шезі для нових, невідомих 

даних здійснюється шляхом агрегування прогнозів від усіх моделей нейронних 

мереж на основі вирішення зворотної задачі. Представлено реалізацію 

алгоритмів навчання та прогнозування в Python.  

Для апробації запропонованого обчислювального алгоритму 

використовуються польові гідрологічні та гідроморфологічні дані, що 

стосуються окремих ділянок гірських річок Тиса, Тересва, Латориця, Опір, 

Ріка, Чорний Черемош. Процедура тестування ансамблю нейронних мереж 

полягала у порівнянні спостережуваних і прогнозованих витрат води. Для 

кількісної оцінки ефективності моделі використані такі метрики, як 

абсолютна похибка та коефіцієнт Неша-Саткліффа. Показано, що 

запропонована ансамблева модель демонструє кращу точність та 

стабільність прогнозів порівняно з індивідуальними нейронними мережами, 

що є типовою перевагою методу беггінгу (Bagging). 

Ключові слова: ансамблеве навчання, штучні нейронні мережі, метод беггінг, 

прогнозування, коефіцієнт шорсткості Шезі, Python. 

https:// doi.org/10.32347/2411-4049.2025.3.154-173 



~ 156 ~ 
 

ISSN: 2411-4049.  Екологічна безпека та природокористування, вип. 4 (56), 2025 

1. Вступ 

 

Розглядається задача застосування ансамблевого навчання штучних 

нейронних мереж (ШНМ) для прогнозування емпіричного коефіцієнта 

гідравлічного опору для відкритих русел, а саме коефіцієнта Шезі, який 

вважається універсальним емпіричним параметром в річковій гідравліці [1].  

Ідентифікація коефіцієнтів гідравлічного опору, таких як коефіцієнт 

шорсткості Шезі та коефіцієнт шорсткості Гоклера-Меннінга, є надзвичайно 

важливим завданням для математичного моделювання рівномірного та 

нерівномірного потоку води у відкритих руслах річок та каналів, зокрема, 

моделювання руслових процесів, моделювання рівнів води в річках, 

обчислення швидкості водного потоку та його пропускної здатності тощо. 

Проте коефіцієнт Шезі дозволяє контролювати більшість факторів і 

параметрів, що визначають гідравлічний опір. Тому цей коефіцієнт відіграє 

ключову роль у гідравлічних розрахунках, дозволяючи точно моделювати рух 

води в річках, каналах та інших відкритих водотоках на основі одно- та 

двовимірної математичних моделей гідродинаміки [1-4]. Адекватне 

прогнозування коефіцієнта Шезі є критично важливим для багатьох 

інженерних та екологічних завдань в галузі водного господарства, включаючи 

моделювання паводкових потоків, оцінку ризиків повеней, прогнозування 

прориву дамб [5-8], прогнозування загальної та локальної ерозії русла річки, 

транспортування та осадження наносів [9-13], моделювання транспорту 

забруднюючих речовин [14], гідравлічне моделювання для проєктування 

інфраструктури в межах річкового середовища [13], аналіз якості води, 

управління річковими екосистемами та роботи з відновлення річок [15-17] 

тощо. Неточність у визначенні цього коефіцієнта гідравлічного опору може 

призвести до значних похибок у гідравлічних моделях, що, своєю чергою, 

може мати серйозні наслідки і загрози для безпеки та ефективності 

інфраструктури і водних систем [5, 13]. 

Прогнозування складних нелінійних процесів, якими є гідродинамічні 

явища, спонукає до застосування сучасних методів машинного навчання. 

Ансамблеві методи вважаються потужним інструментом у машинному 

навчанні, оскільки дозволяють знизити дисперсію та зміщення прогнозів, що 

часто призводить до вищої узагальнюючої здатності порівняно з окремими 

моделями [18-21]. Як відомо, ансамблеві методи навчання ґрунтуються на 

принципі об’єднання прогнозів декількох індивідуальних моделей для 

отримання більш надійного і точного результату обчислень. В якості моделей 

системи ансамблю зазвичай застосовуються дерева рішень, машини опорних 

векторів, нейронні мережі, регресійні моделі тощо [22-25].  

Ансамблеві методи широко застосовуються в різних сферах завдяки їх 

високій точності, стійкості до перенавчання та здатності узагальнювати дані. 

Основні сфери їх застосування включають [19, 21, 26]: обробка зображень та 

відео, розпізнавання мови, фінансове прогнозування, медична діагностика, 

прогнозування в метеорології та кліматології, моделювання складних 

фізичних і хімічних процесів, аналіз даних і прогнозування в 

геоінформаційних системах, у маркетингових та електронних комерційних 

системах, та ін. Також ансамблеві методи набувають дедалі більшого 

поширення у гідротехніці та управлінні водними ресурсами, зокрема, відомі їх 

застосування для прогнозування стоку та рівнів води в річках, моделювання 
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розподілу та транспорту забруднюючих речовин у водних об’єктах, виявлення 

та прогнозування паводкових ризиків, заповнення прогалин у гідрологічних 

даних (інтерполяція або реконструкція відсутніх вимірювань витрати або рівня 

води) [27-29]. 

Огляд методів ансамблевого навчання викладено в [18-23, 25]. Зокрема, в 

таких роботах розглядаються наступні важливі питання: загальна структура 

ансамблю моделей, стратегії побудови ансамблю моделей, стратегії розподілу 

даних між моделями ансамблю, методи ансамблевого навчання, а також 

методи агрегування (злиття) прогнозів моделей ансамблю. 

Пропонується для підтримки математичного моделювання річкових 

потоків застосувати ансамбль штучних нейронних мереж для обчислення 

коефіцієнта шорсткості Шезі. Такий підхід є продовженням наших 

досліджень, які представлені в публікаціях [30-33] та включали в себе огляд 

методів обчислення коефіцієнта Шезі, уточнення необхідних наборів даних, 

розробку базової моделі з врахуванням ускладнення архітектури нейронної 

мережі. У нашому випадку для вирішення задачі прогнозування емпіричного 

коефіцієнта гідравлічного опору Шезі для відкритих руслових потоків 

застосовується модель повно-зв'язної нейронної мережі з сигмоподібною 

функцією активації, яка успішно апробована в роботах [31-33]. Пропонується 

побудувати однорідний ансамбль з трьох таких моделей нейронних мереж. 

Навчання цих моделей здійснюється паралельно за допомогою методу 

зворотного поширення похибки на основі методу беггінгу (Bagging або 

Bootstrap Aggregating) [19, 24]. Навчальні вибірки формуються на основі 

польових гідрологічних та гідроморфологічних даних про особливості 

поведінки гідравлічного опору на ділянках передгірських річок. Ці дані 

включають: висоту та ширину потоку, середню швидкість потоку, 

гідравлічний ухил русла, розмір частинок донного матеріалу та інші відповідні 

гідравлічні та морфометричні характеристики. На основі навченого ансамблю 

нейронних мереж наближена оцінка досліджуваного емпіричного коефіцієнта 

Шезі виконується за допомогою злиття (агрегування) прогнозів трьох моделей 

із застосуванням модифікованого методу голосування на основі вирішення 

зворотної задачі. Цей підхід дозволяє отримати більш стабільний та точний 

прогноз, уникаючи індивідуальні похибки окремих моделей. 

 

2. Постановка задачі 

 

Основною задачею є розробка та тестування обчислювального алгоритму, 

заснованого на ансамблевому навчанні штучних нейронних мереж, для 

прогнозування емпіричного коефіцієнта гідравлічного опору у відкритих 

руслах річок, відомого як коефіцієнт шорсткості Шезі С. Вхідними даними для 

моделі є гідрологічні та гідроморфологічні характеристики русла: середні 

ширина та глибина потоку, гідравлічний радіус, витрата води або швидкість 

потоку, ухил поверхні води, шорсткість дна та інші параметри, що впливають 

на опір потоку. Цільовою змінною є коефіцієнт Шезі С, який потрібно 

визначити з високою точністю. 

Математично задачу можна сформулювати як пошук функції f: X → Y, де X – 

простір вхідних гідрологічних та гідроморфологічних параметрів, а Y – 

значення коефіцієнта Шезі C. Ця функція буде апроксимуватися ансамблевою 

моделлю нейронних мереж.  
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В рамках ансамблевої системи наближене значення коефіцієнта шорсткості 

Шезі 𝐶̃ (м1 2⁄ с⁄ ) пропонується визначати згідно з наступною обчислювальною 

моделлю: 
 

𝐶̃(𝑋) = 𝐶𝐴(𝑋) ± 𝜑(𝑋),         (1) 

 

де 𝐶𝐴 – значення коефіцієнта Шезі в першому наближенні, що обчислюється 

за допомогою основної ШНМ (ANN-A), яка навчається за допомогою 

прикладів (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖, 𝑋 = (𝑥1, 𝑥2, 𝑉) – вектор вхідних гідрологічних і 

гідроморфологічних характеристик для ШНМ, 𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}, 

𝑛 – коефіцієнт шорсткості Гоклера-Меннінга (с м1 3⁄⁄ ), ∆ – висота виступів 

шорсткості русла (м), 𝑆𝑓 – ухил поверхні води, 𝐵  – середня ширина потоку (м), 

ℎ – середня глибина потоку (м), 𝑅 – гідравлічний радіус (м), 𝑉 – середня 

швидкість водного потоку (м с⁄ ), 𝜑 – величина уточнення, яка встановлюється 

за допомогою додаткових ШНМ (ANN-B1 та ANN-B2, які будуються на основі 

базової моделі мережі), що попередньо навчаються на окремих групах 

прикладів пар входів (𝑥1, 𝑥2, 𝑉)𝑖 та еталонних виходів 𝜑𝑖 нейронної мережі, де  

 

𝜑𝑖 = (𝐶𝑜𝑖 − 𝐶̅)𝛾,           (2) 

𝛾 = 1, 𝐶𝑜𝑖 > 𝐶̅,           (3) 

𝛾 = −1, 𝐶𝑜𝑖 < 𝐶̅,           (4) 

𝐶𝑜𝑖 ∈ [𝐶𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛], 
𝐶̅ = ∑ 𝐶𝑜𝑖𝑖 𝑚⁄ , 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ , 

 

𝐶𝑜𝑖 – еталонне значення коефіцієнта Шезі у діапазоні його максимального  

𝐶𝑚𝑎𝑥 та мінімального 𝐶𝑚𝑖𝑛 значень в рамках досліджуваної предметної 

області, 𝐶̅ – середнє значення всіх 𝐶𝑜𝑖 з пакету навчальних прикладів основної 

ШНМ, 𝑚 – кількість прикладів в основній навчальній вибірці, 𝛾 – допоміжний 

коефіцієнт, який визначається згідно з умовами (3), (4). 

Пропонується застосовувати для обчислення коефіцієнта шорсткості Шезі 

ансамбль штучних нейронних мереж з врахуванням наступних ідей, 

припущень і обмежень: 

1. Нехай в рамках досліджуваної предметної області наближені значення 

коефіцієнта Шезі обчислюються згідно з (1), тобто як сума або різниця 

величини 𝐶𝐴, яка визначена за допомогою базової ШНМ, та величини його 

уточнення 𝜑, що визначена за допомогою допоміжних ШНМ. 

2. Об’єднуємо три моделі повністю зв’язаної ШНМ прямого поширення з 

одним прихованим шаром і сигмоподібною логістичною функцією активації. 

Значення коефіцієнта Шезі в першому наближенні 𝐶𝐴 обчислюється за 

допомогою базової моделі ШНМ (модель ANN-A), яка була апробована в 

попередніх дослідженнях [31, 32]. Дві додаткові ШНМ (моделі ANN-B1 та 

ANN-B2), що будуються на основі базової моделі мережі, застосовуються для 

обчислення величини 𝜑 для уточнення коефіцієнта 𝐶𝐴. Додаткові нейронні 

мережі навчаються на окремих підвибірках навчальних прикладів, які 

формуються експертом із загальної навчальної вибірки.  

3. Остаточний результат прогнозування ансамблю встановлюється за 

підсумками агрегування прогнозів 𝐶𝐴, 𝐶̃𝐵1, 𝐶̃𝐵2 трьох нейронних мереж. Для 

цього аналізується множина прогнозів на основі модифікованого методу 



~ 159 ~ 
 

ISSN: 2411-4049.  Екологічна безпека та природокористування, вип. 4 (56), 2025 

голосування із вирішенням зворотної задачі, щоб встановити єдиний 

результат, який найкраще відповідає вхідним умовам задачі (1). 

 

3. Методи, матеріали та обчислювальні алгоритми 

 

У цьому дослідженні використовуються матеріали та розвиваються результати 

вирішення задачі обчислення емпіричного коефіцієнта шорсткості Шезі за 

допомогою штучних нейронних мереж для підтримки математичного 

моделювання річкових потоків, представлені в [30-33]. 

Для побудови, навчання і тестування ансамблю ШНМ використано 

інструменти програмування Python [34-39]. Загалом для вирішення 

поставленої задачі були використані наукові методи теоретичного та 

емпіричного вивчення проблеми, діалектичного пізнання, методи експертної 

оцінки та порівняння, евристичні методи, методи формалізації та моделювання 

в рамках цілісного підходу [40], методи гідравліки відкритих каналів [1-3], дані 

про основні гідравлічні характеристики річок Українських Карпат [41], методи 

інтелектуального аналізу даних та методи прийняття рішень в умовах 

невизначеності [20, 42-45], методи розробки штучних нейронних мереж  

[34, 36, 38, 46, 47], методи ансамблевого навчання [18-25], методи розробки 

програмного забезпечення за допомогою мови Python для підтримки навчання 

нейронних мереж [34-39]. 

 

3.1. Структура ансамблю нейронних мереж 

 

Пропонується система ансамблю, яка складається з трьох однорідних повно-

зв'язних нейронних мереж (ПНМ) – ANN-A, ANN-B1 та ANN-B2 (рис. 1). 

Кожна ПНМ має вхідний шар, один прихований шар та вихідний шар. 

Кількість нейронів у вхідному шарі відповідає кількості вхідних гідрологічних 

та гідроморфологічних параметрів. Кількість нейронів у вихідному шарі 

дорівнює одному, оскільки обчислюється єдине значення: у випадку основної 

моделі ANN-A – значення коефіцієнта Шезі в першому наближенні 𝐶𝐴, 

у випадку допоміжних моделей ANN-B1 та ANN-B2 – відповідно значення 

величини 𝜑𝐵1 = +𝜑 та 𝜑𝐵2 = −𝜑, які використовується для уточнення 𝐶𝐴 

згідно з (1). В якості функції активації в прихованих шарах використовується 

сигмоїдна функція, яка дозволяє моделювати нелінійні залежності [46, 47].  

Базова модель ПНМ для прогнозування коефіцієнта Шезі описана і 

апробована в [31-33]: 

 

𝐶 = 𝑓(𝑥1, 𝑥2, 𝑉), 𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}.      (5) 

 

Пропонується для допоміжних мереж ANN-B1 та ANN-B2 використати 

таку ж архітектуру, як і для ANN-A – згідно з моделлю (5), але при цьому у 

нейроні вихідного шару встановлюється параметр 𝜑, еталонні значення якого 

для навчальних прикладів визначаються згідно з (2)-(4). Таким чином, 

допоміжну нейронну мережу можна описати у вигляді обчислювальної моделі 

(2), (6):  

 

𝜑 = 𝑓(𝑥1, 𝑥2, 𝑉), 𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}.      (6) 
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Нейронна мережа ANN-B1 будується на основі обчислювальної моделі (2), 

(3), (6), а мережа ANN-B2 – на основі (2), (4), (6). Ці нейронні мережі в нашому 

випадку навчаються на відповідних наборах прикладів (𝑥1, 𝑥2, 𝑉, 𝜑)
𝐵1 та 

(𝑥1, 𝑥2, 𝑉, 𝜑)
𝐵2, які у свою чергу формуються експертом на основі навчальних 

вибірок (𝑥1, 𝑥2, 𝑉, 𝐶𝑜). 
В нашому випадку загальна модель однорідного ансамблю може бути 

представлена, як на рис. 1. Ансамбль складається з набору нейронних мереж 

ANN-А, ANN-B1, ANN-B2, які пройшли навчання на вхідних даних. Такі 

учасники ансамблю створюють прогнози 𝐶𝐴, 𝜑𝐵1, 𝜑𝐵2, які об’єднуються з 

врахуванням (1). Прогнози 𝐶𝐴, 𝐶̃𝐵1, 𝐶̃𝐵2 аналізуються для отримання сукупного 

прогнозу (агрегування). Таким чином, загальна основа запропонованої 

ансамблевої системи полягає у використанні функції агрегування 𝐶̃ для 

об’єднання прогнозів 𝐶𝐴, 𝐶̃𝐵1 = 𝐶̃(𝐶𝐴, 𝜑𝐵1), 𝐶̃𝐵2 = 𝐶̃(𝐶𝐴, 𝜑𝐵2), щоб 

передбачити єдиний результат, який найкраще відповідає вхідним умовам 

задачі (1). 
 

  

 

Рис. 1. Загальна структура однорідного ансамблю нейронних мереж  

 

3.2. Алгоритм розподілу даних між моделями ансамблю 

 

Вхідні та вихідні набори даних, включаючи навчальні та тестові приклади для 

базової моделі нейронної мережі (НМ), побудовані відповідно до принципів 

безперервності, однорідності, ненадлишковості та нормалізації. Ці набори 

даних отримані з польових спостережень за гідрологічними та 

гідроморфологічними параметрами річкових ділянок: витрата води 𝑄 (м3 с⁄ ), 

середня швидкість водного потоку 𝑉 (м с⁄ ), коефіцієнт опору Гоклера-

Меннінга 𝑛, ухил поверхні води 𝑆𝑓, середні ширина 𝐵 (м) та глибина потоку 

ℎ (м), висота виступів шорсткості ∆ (середній діаметр часток ложа русла або 

середній діаметр відмостки русла (м)) та гідравлічний радіус 𝑅 (м). Польові 

дані перетворюються таким чином, щоб отримати їх модельні значення 

в діапазоні від 0 до 1. Зокрема, з метою нормалізації, параметр 𝐵 був замінений 
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на коефіцієнт 𝑆𝑓𝐵ℎ
−1. Замість параметрів 𝑉, ℎ, 𝐶, розглядалися 

характеристики моделі 𝑉 × 10−2, ℎ × 10−2, 𝐶 × 10−2. Значення параметрів 𝜑, 

𝑆𝑓 та 𝑛 залишились незміненими. Процедура формування, уточнення та 

нормалізації таких наборів даних у межах досліджуваної області описана в  

[31, 32]. Такі ж принципи застосовуються до підготовки вхідних даних для всіх 

моделей ансамблю. 

Формування навчальних вибірок для кожної НМ ансамблю здійснюється на 

основі методу беггінгу (від Bootstrap Aggregating, Bagging) [19, 24]. Суть 

методу полягає у навчанні кількох моделей одного типу (наприклад, нейронні 

мережі, дерева рішень та ін.) на окремих підвибірках навчальних даних та 

об'єднанні їх прогнозів. Це дозволяє створювати унікальні навчальні набори 

для кожної моделі ансамблю, що сприяє підвищенню його узагальнюючої 

здатності та зниженню дисперсії. Також застосовується стратегія незалежних 

наборів даних, яка передбачає формування і застосування підмножин даних, 

які не залежать одна від одної [21, 22]. 

Алгоритм розподілу даних полягає у наступному (рис. 2): 

1. Вхід: набір навчальних прикладів 𝐷𝑜 = (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖 розміром 𝑚, в яких 

значення вхідних параметрів (𝑥1, 𝑥2, 𝑉)𝑖, де 𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}, 

ставляться у відповідність еталонним значенням коефіцієнта Шезі 𝐶𝑜 ∈
[𝐶𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛]; референтні значення 𝐶𝑜𝑖 визначаються відповідно до даних 

гідрологічних спостережень на основі формули Шезі [1-3, 31]: 

 

𝐶𝑜𝑖 = (
𝑄𝑜

𝐴√𝑅𝑆𝑓
)
𝑖

, 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ ,         (7) 

 

де 𝑄𝑜 – спостережувана витрата водного потоку (м3 с⁄ ), 𝑚 – кількість 

прикладів в основній навчальній вибірці. 

2. Основна НМ ANN-А навчається за допомогою вибірки прикладів 𝐷𝑜. 

3. Допоміжні НМ ANN-B1 та ANN-B2 навчаються за допомогою 

відповідних незалежних підмножин навчальних прикладів 𝐷1 = (𝑥1, 𝑥2, 𝑉, 𝜑)𝑖
𝐵1 

та 𝐷2 = (𝑥1, 𝑥2, 𝑉, 𝜑)𝑖
𝐵2, які створюються експертом за допомогою таких 

правил: 

3.1. (𝑥1, 𝑥2, 𝑉, 𝜑)𝑖
𝐵1 формуються на основі підвибірки (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖, 𝐶𝑜𝑖 ∈

[𝐶𝑚𝑎𝑥, 𝐶𝛼], 𝐶𝛼 > 𝐶̅, де еталонні значення 𝜑𝑖 обчислюються згідно з (2), (3), 𝑖 =
1,𝑚1 < 𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

3.2. (𝑥1, 𝑥2, 𝑉, 𝜑)𝑖
𝐵2 формуються на основі підвибірки (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖, 𝐶𝑜𝑖 ∈

[𝐶𝛽 , 𝐶𝑚𝑖𝑛], 𝐶𝛽 < 𝐶̅, де еталонні значення 𝜑𝑖 обчислюються згідно з (2), (4), 𝑖 =

1,𝑚2 < 𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
3.3. 𝐶𝛼, 𝐶𝛽 – встановлюються експертом за результатами аналізу кожної 

навчальної вибірки (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖 шляхом пошуку випадків, коли 𝐶𝑜𝑖 ≈ 𝐶̅, 
𝐶𝛽 < 𝐶̅ < 𝐶𝛼, 𝐶𝑜 ∈ (𝐶𝛼, 𝐶𝛽). 

4. Решта даних, що не потрапили до 𝐷1 та 𝐷2 (так звані Out-of-Bag (OOB) 

приклади), (𝑥1, 𝑥2, 𝑉, 𝐶𝑜)𝑖, 𝐶𝑖 ∈ (𝐶𝛼 , 𝐶𝛽), 𝐶𝑖 ≈ 𝐶̅, 𝐶𝛽 < 𝐶̅ < 𝐶𝛼, не беруть участі 

в навчанні допоміжних НМ, оскільки вважаємо (припускаємо), що для цієї 

групи даних обчислене значення 𝐶𝐴 за допомогою основної НМ уточнення не 

потребує. 
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Зразки сформованих згідно з цим алгоритмом навчальних наборів даних 

для запропонованого ансамблю нейронних мереж представлено в репозиторії 

Github [48]. 

 

 
 

Рис. 2. Паралельне ансамблеве навчання з використанням незалежних наборів даних, 

𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}, 𝑥3 = 𝑉  

 

3.3. Алгоритм навчання ансамблю нейронних мереж 

 

Кожна нейронна мережа в ансамблі навчається паралельно на своїй bootstrap-

вибірці (як це показано на рис. 2) за допомогою методу зворотного поширення 

похибки (backpropagation) [19, 47]. Реалізація алгоритму навчання на Python 

представлена в табл. 1, 2 та у модулі C_EANN_training.py в репозиторії  

Github [48]. 

Алгоритм навчання: 

1. Паралельне формування нейронних мереж ANN_А, ANN_B1, ANN_B2 

шляхом виконання для кожної з них наступних кроків (табл. 1): 

1.1. Відкриття файлу вхідних даних. 

1.2. Ініціалізація параметрів архітектури та параметрів методу навчання 

(функція активації, епохи та швидкість навчання). Коефіцієнт швидкості 

навчання = 0,002. Логістична функція активації (сигмоїд) для нейронів 

прихованих шарів. 

1.3. Випадковим чином здійснюється ініціалізація матриць вагових 

коефіцієнтів. 

1.4. Завантаження відповідних начальних наборів даних. 

2. Паралельне навчання ANN_А, ANN_B1, ANN_B2. Для кожної нейронної 

мережі 𝐴𝑁𝑁𝑖 (i = 0, 1, 2) в ансамблі виконуються (табл. 2): 

2.1. Вхід: навчальні приклади 𝐷𝑖 = (𝑥1, 𝑥2, 𝑥3, 𝑦𝑖), де 𝑥𝑗 – вхідні 

характеристики, 𝑦𝑖 – цільове значення. 

2.2. Ітерації навчання (епохи): 

2.2.1. Пряме поширення:  

для кожного прикладу (𝑥1, 𝑥2, 𝑥3, 𝑦𝑖) з 𝐷𝑖 обчислюється вихід 

нейронної мережі 𝑦̂𝑖.  
 2.2.2. Обчислення похибки: 𝐸𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (функція втрат). 
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 2.2.3. Зворотне поширення: похибка поширюється назад по мережі, 

обчислюються градієнти функції втрат по відношенню до вагових 

коефіцієнтів. 

 2.2.4. Оновлення вагових коефіцієнтів: вагові коефіцієнти оновлюються 

за правилом градієнтного спуску, використовуючи обчислені градієнти та 

швидкість навчання. 

2.3. Умова зупинки: навчання продовжується до досягнення заданої 

кількості епох. 

3. Результати навчання ансамблю формуються у вигляді наборів окремих 

файлів даних із значеннями налаштованих (натренованих) матриць вагових 

коефіцієнтів для кожної з НМ ANN-А, ANN-B1, ANN-B2 (табл. 2). 

Отримані результати навчання ансамблю нейронних мереж 

використовуються для обчислення (прогнозування) значень коефіцієнта Шезі 

на довільних вхідних даних в рамках предметної області. 

 

Таблиця 1. Реалізація алгоритму навчання ансамблю нейронних мереж в 

Python. Блок ініціалізації параметрів 

 
№ Програмний код № Програмний код 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

 
28 
29 

 

 

import openpyxl 
import numpy as np 
from os.path import join, abspath 
 
# функція активації 
def logistic(x): 
    return 1.0 / (1 + np.exp(-x)) 
def logistic_deriv(x): 
    return logistic(x) * (1 - logistic(x)) 
 
# параметри навчання мережі 
epoch_count = 200  # епохи навчання 
alpha = 0.002 # швидкість навчання 
 
# реалізація навчання ШНМі  
# з індентифікатором ANN_ID 
def traininng_ANN(ANN_ID, 
epoch_count, alpha): 
 
    # зчитування параметрів мережі та  
    # навчальних прикладів  
    # з файлу даних Excel 
    page_number = 0  
    if ANN_ID == "A": page_number = 0 
    if ANN_ID == "B1": page_number = 2 
    if ANN_ID == "B2": page_number = 4 
 
    data_path = join('.', 'Data', 
"Training_Data.xlsx") 
    data_path = abspath(data_path) 
    Training_Data = 
openpyxl.open(data_path, 
read_only=True, data_only=True) 

30 
 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

 
45 

 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

 

    sheet_data = 
Training_Data.worksheets[page_number] 
 
    # кількість навчальних прикладів  
    max_row_data = sheet_data['A3'].value   
 
    # параметри мережі 
    input_size = sheet_data['A5'].value   
    hidden_size = sheet_data['A7'].value   
    output_size = sheet_data['A9'].value   
 
    # матриці вагових коефіцієнтів W_1 і W_2 
    # задаються випадковими значеннями 
 
    np.random.seed(1) 
    W_1 = 0.02 * np.random.random((input_size, 
hidden_size)) - 0.01 
    W_2 = 0.6 * np.random.random((hidden_size, 
output_size)) - 0.3 
 

    # ініціалізація матриць входів і виходів НМ 
    len_ryadok = input_size 
# вхід 
    characteristics_riverbed = np.zeros( 
        shape=(max_row_data, len_ryadok))   
# вихід  
    coef_C = np.zeros(shape=(max_row_data))   
    for i in range(max_row_data): 
        coef_C[i] = sheet_data[i + 2][input_size + 1].value 
        for j in range(len_ryadok): 
            characteristics_riverbed[i][j] = sheet_data[i + 
2][j + 1].value 
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Таблиця 2. Реалізація алгоритму навчання ансамблю нейронних мереж в 

Python. Блок паралельного навчання 

 
№ Програмний код № Програмний код 
58 
59 
60 

 
61 
62 
63 

 
64 

 
65 
66 
67 
68 

 
69 
 

 

70 
71 
72 

 
73 

 
74 
75 
76 
77 
78 
79 
80 
81 
82 

 

    # реалізація епох навчання 
    for iteration in range(epoch_count): 
        for i in 
range(len(characteristics_riverbed)): 
 
            # прямий хід 
            layer_0 = characteristics_riverbed[i:i 
+ 1] 
            layer_1 = logistic(np.dot(layer_0, 
W_1)) 
            layer_2 = np.dot(layer_1, W_2) 
 
            # зворотний хід 
            layer_2_delta = (coef_C[i:i + 1] - 
layer_2) 
            layer_1_delta = 
layer_2_delta.dot(W_2.T) * 
logistic_deriv(layer_1) 
 
            # оновлення вагових коефіцієнтів 
            W_2 = W_2 + alpha * 
layer_1.T.dot(layer_2_delta) 
            W_1 = W_1 + alpha * 
layer_0.T.dot(layer_1_delta) 
 
 # закриття файлу даних Excel 
    Training_Data.close()   
 
    # запис у файл даних  
    # результатів навчання –  
    # матриці ваг W_1 та W_2 для ANN_ID 
    data_path = join('.', 'Data', 
"weights_matrix_1_"+ANN_ID+".txt") 
    data_path = abspath(data_path) 

83 
84 
85 
86 
87 
88 
89 
90 

 
91 
92 
93 

 
94 
95 
96 
97 
98 
99 

100 
101 

 
 

102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

    f = open(data_path, 'w') 
    for i in range(0, input_size - 1): 
        for j in range(0, hidden_size - 1): 
            f.write(str(W_1[i][j]) + ' ')   
        f.write(str(W_1[i][hidden_size - 1]) + '\n') 
    for j in range(0, hidden_size - 1): 
        f.write(str(W_1[input_size - 1][j]) + ' ') 
    f.write(str(W_1[input_size - 1][hidden_size - 
1]))   
    f.close() 
 
    data_path = join('.', 'Data', 
"weights_matrix_2_"+ANN_ID+".txt") 
    data_path = abspath(data_path) 
    f = open(data_path, 'w') 
    for i in range(0, hidden_size - 1): 
        for j in range(0, 1): 
            f.write(str(W_2[i][j]) + '\n') 
    f.write(str(W_2[hidden_size - 1][0]))   
    f.close() 
    print('Для ANN_'+ANN_ID+' налаштованi 
матрицi вагових коефiєнтiв успiшно 
збережено.') 
#  кінець функції traininng_ANN  
 
# паралельне навчання ансамблю НМ 
# навчання ANN_A  
traininng_ANN("A", 100, alpha)  
# навчання ANN_B1 
traininng_ANN("B1", 600, alpha)  
# навчання ANN_B2 
traininng_ANN("B2", 600, alpha)  
print('Завершення програми.')  
input() 

 

3.4. Алгоритм прогнозування за допомогою навченого ансамблю моделей 

 

Після навчання кожної нейронної мережі в ансамблі, прогнозування 

емпіричного коефіцієнта Шезі для нових, невідомих даних здійснюється 

шляхом агрегування (злиття) прогнозів від усіх моделей НМ [19, 21]. Для 

цього пропонується використовувати модифікований метод голосування на 

основі вирішення зворотної задачі. Ідея такого підходу передбачає: 

1) визначення прогнозів для кожного учасника ансамблю, 2) розглядається 

зворотна задача (8), (9) з метою встановлення (вибору, голосування) в якості 

остаточного результату прогнозування тільки тієї оцінки певної НМ, яка 

найкраще відповідає вхідним умовам ансамблю. Реалізація основних методів 

алгоритму прогнозування коефіцієнта Шезі за допомогою ансамблю 

штучних нейронних мереж на Python представлена в табл. 3, 4, 5 

(ініціалізація параметрів НМ, масивів даних та збереження результатів 

прогнозування не наводяться) та у модулі C_EANN_calculating.py в 

репозиторії Github [48].  
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Алгоритм прогнозування: 

1. Вхід: набір нових вхідних даних 𝑋 = (𝑥1, 𝑥2, 𝑥3) для прогнозування. 

2. Завантаження натренованих матриць вагових коефіцієнтів для нейронних 

мереж ANN-А, ANN-B1, ANN-B2. 

3. Для кожного прикладу (𝑥1, 𝑥2, 𝑥3) з набору даних 𝑋 виконується (табл. 3): 

3.1. За допомогою основної НМ ANN-А обчислюється в першому 

наближенні значення коефіцієнта Шезі 𝐶𝐴 згідно з обчислювальною моделлю (5). 

3.2. За допомогою НМ ANN-B1 обчислюється величина уточнення 𝜑𝐵1 на 

основі (2), (3), (6) та визначається згідно з (1), (3) наближене значення 

коефіцієнта Шезі 𝐶̃𝐵1. 

3.3. За допомогою НМ ANN-B2 обчислюється величина уточнення 𝜑𝐵2 на 

основі (2), (4), (6) та визначається згідно з (1), (4) наближене значення 

коефіцієнта Шезі 𝐶̃𝐵2. 

3.4. Агрегування прогнозів (табл. 4): встановлюється, яка з наближених 

оцінок коефіцієнта Шезі 𝐶𝐴, 𝐶̃𝐵1, 𝐶̃𝐵2 найкраще відповідає вектору вхідних 

даних (𝑥1, 𝑥2, 𝑥3), де 𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}, 𝑥3 = 𝑉; для кожного з 

індивідуальних прогнозів розглядається зворотна задача на основі умови: 

 

|𝑉̃𝑘 − 𝑉| → 𝑚𝑖𝑛, 𝑘 = 1,3̅̅ ̅̅ ,          (8) 

 

де 𝑉 – еталонне значення швидкості водного потоку відповідно до 

гідрологічних даних, що подаються на вхід ансамблю нейронних мереж, 𝑉̃1 =
𝑉̃(𝐶𝐴),  𝑉̃2 = 𝑉̃(𝐶̃𝐵1), 𝑉̃3 = 𝑉̃(𝐶̃𝐵2), 𝑉̃ – наближене значення швидкості водного 

потоку, що визначається відповідно до даних гідрологічних спостережень на 

основі формули Шезі [1-3, 31]: 

 

𝑉̃ = 𝐶̃√𝑅𝑆𝑓,             (9) 

 

де 𝐶̃ – наближені значення коефіцієнта Шезі, які в нашому випадку є 

множиною індивідуальних прогнозів 𝐶𝐴, 𝐶̃𝐵1, 𝐶̃𝐵2 відповідних НМ, 𝑅 – 

гідравлічний радіус (м), 𝑅 ≅ ℎ  при 𝐵 ≫ ℎ, 𝐵 – середня ширина потоку (м), ℎ – 

середня глибина потоку (м), 
 
𝑆𝑓 – ухил поверхні води. 

Остаточний результат прогнозування ансамблю нейронних мереж 𝐶̃(𝑋) 
обирається серед індивідуальних прогнозів коефіцієнта Шезі 𝐶𝐴, 𝐶̃𝐵1, 𝐶̃𝐵2 

(табл. 5), для якого виконується умова (8). 

4. Збереження результатів прогнозування у окремому файлі даних. 

 

Таблиця 3. Реалізація алгоритму прогнозування в Python. Блок методу 

обчислення прогнозів нейронних мереж 

 
№ Програмний код № Програмний код 

1 
2 
3 
4 
 

5 
6 
7 

import openpyxl 
import numpy as np 
from openpyxl import Workbook 
from openpyxl.styles import Alignment, 
PatternFill, Font 
from os.path import join, abspath 
 
# стандартна логістична ф-ія активації 

32 
33 
34 
35 
36 
37 
38 
39 

 
    for i in range(len(raw_matrix1)): 
        b = raw_matrix1[i] 
        a = b.split(' ') 
        for j in range(len(raw_matrix2)): 
            W_1[i][j] = float(a[j]) 
    for i in range(len(raw_matrix2)): 
        W_2[i] = float(raw_matrix2[i]) 
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8 
9 

10 
11 
12 
13 
14 
15 

 
16 
17 
18 
19 
20 

 
21 
22 
23 
24 
25 
26 
27 

 
28 
29 
30 

 
31 

 

def logistic(x): 
    return 1.0 / (1 + np.exp(-x)) 
 
# * функція для обчислення прогнозів ШНМ * 
def calculating_ANN(ANN_ID): 
     
    # зчитування матриць вагових коефіцієнтів  
    data_path = join('.', 'Data', 
"weights_matrix_1_"+ANN_ID+".txt") 
    data_path = abspath(data_path) 
    f = open(data_path) 
    raw_matrix1 = f.readlines() 
    f.close() 
    data_path = join('.', 'Data', 
"weights_matrix_2_"+ANN_ID+".txt") 
    data_path = abspath(data_path) 
    f = open(data_path) 
    raw_matrix2 = f.readlines() 
    f.close() 
 
    # ініціалізація вектора виходів НМ 
    output_ANN = 
np.zeros(shape=(max_row_data)) 
 
    # ініціалізація матриць W_1 і W_2 
    W_1 = np.zeros(shape=(input_size, 
hidden_size)) 
    W_2 = np.zeros(shape=(hidden_size, 
output_size)) 

40 
41 
42 

 
43 
44 

 
 

45 
46 
47 

 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

 
 

58 
59 
60 

 

 
# відслідковування похибки  
    if (len(raw_matrix1) == input_size) and 
(len(raw_matrix2) == hidden_size): 
        param_matching = 0 
        print('Вхiднi данi для ANN_' + ANN_ID + 
' вiдповiдають параметрам матриць ваг 
ШНМ,') 
    else: 
        param_matching = 1 
        print('Вхiднi данi не відповiдають 
параметрам матриць ваг ШНМ.') 
 
    # обчислення виходів мережі 
    if param_matching == 0: 
        for i in range(max_row_data): 
            # прямий хід обчислень 
           layer_0 = characteristics_riverbed[i:i + 1] 
           layer_1 = logistic(np.dot(layer_0, W_1)) 
            layer_2 = np.dot(layer_1, W_2) 
            output_ANN[i] = layer_2[0][0] 
            print('для набору вхідних параметрiв 
№', i + 1, ', обчислений вихід ANN_'+ANN_ID+ 
' = ', output_ANN[i]) 
 
    return  output_ANN 
# * кінець функції calculating_ANN * 

 

Таблиця 4. Реалізація алгоритму прогнозування в Python. Блок методу 

агрегування прогнозів нейронних мереж 

 
№ Програмний код № Програмний код 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

def aggregation_C(C, C1, C2, Q, B, H, Sf): 
    # аналіз прогнозів C_A, C_B1, C_B2 та  
    # встановлення найкращого з них  
    # (зворотна задача (8), (9)) 
 
    delta_V = np.zeros(shape=(3)) 
# еталонна швидкість потоку V(Q) 
    V_Q = Q / (B * H)  
# наближена швидкість V(C_A), 
    V = C * (H * Sf) ** 0.5  
    V1 = C1 * (H * Sf) ** 0.5 # шв. V(C_B1) 
    V2 = C2 * (H * Sf) ** 0.5 # шв. V(C_B2) 
 
    # обчислення відхилення від еталону  
    delta_V[0] = abs(V_Q - V) 
    delta_V[1] = abs(V_Q - V1) 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

    delta_V[2] = abs(V_Q - V2) 
 
    # встановлення мінімального відхилення 
    min_delta = delta_V[0] 
    min_ind = 0 
    for i in range(1,3): 
        if min_delta > delta_V[i]: 
            min_delta = delta_V[i] 
            min_ind = i 
 
    # обирається вихід нейронної мережі  
    # з мінімальним відхиленням 
    # від еталонного значення V(Q) 
    if min_ind == 0: return C/100 # вихід = C_A 
    if min_ind == 1: return C1/100 # вихід = C_B1 
    if min_ind == 2: return C2/100 # вихід = C_B2 

 

Таблиця 5. Реалізація алгоритму прогнозування в Python. Блок обчислення 

остаточного прогнозу ансамблю нейронних мереж 

 
№ Програмний код № Програмний код 
93 
94 
95 
96 
97 

# обчислення прогнозів навчених ШНМ  
# ANN_A, ANN_B1, ANN_B2 
coef_C_A = calculating_ANN("A")   
coef_delta1 = calculating_ANN("B1")   
coef_delta2 = calculating_ANN("B2")    

104 
105 
106 
107 
108 

# агрегування прогнозів НМ  
# (розглядається зворотна задача) 
 
for i in range(max_row_data): 
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98 
99 

100 
101 
102 

 
103 

 
# обчислення значень коефіцієнта Шезі  
# з врахуванням прогнозів НМ 
for i in range(max_row_data): 
    coef_C_B1[i] = coef_C_A[i] + 
coef_delta1[i] 
    coef_C_B2[i] = coef_C_A[i] - 
coef_delta2[i] 

109 
110 
111 

 
 

112 
113 

    # встановлення остаточних значень  
    # коефіцієнта Шезі С 
    coef_C[i] = aggregation_C(coef_C_A[i]*100, 
coef_C_B1[i]*100, coef_C_B2[i]*100, Q[i], B[i], 
H[i], Sf[i]) 
 
    print('coef_C[', i, '] = ', coef_C[i]) 

 

3.5. Про матеріали для апробації обчислювального алгоритму 

 

Точність оцінювання коефіцієнта Шезі значною мірою залежить від 

достовірності та точності вимірювань відповідних гідроморфологічних 

параметрів відкритих руслових потоків [30, 31]. 

Для апробації запропонованого обчислювального алгоритму 

використовуються польові гідравлічні та морфометричні дані, що стосуються 

окремих ділянок гірських річок (табл. 6): Тиса (м. Рахів), Тересва (с. Усть-

Чорна), Латориця (с. Підполоззя), Опір (м. Сколе), Ріка (с. Міжгір’я), Чорний 

Черемош (с. Верховина). Ці матеріали також використані для обчислення 

коефіцієнта шорсткості Шезі на основі нейронних мереж в дослідженні [32], 

в якому описані особливості предметної області та обмеження параметрів для 

вказаних ділянок річок. Дані містять вимірювання, що характеризуються 

різноманітними умовами гідравлічного опору. Набір даних включає: 

1) морфометричні характеристики русла: середні ширина 𝐵 та глибина ℎ 

потоку (м), площа поперечного перерізу 𝐴 (м2), гідравлічний радіус 𝑅 (м),  
𝑅 ≅ ℎ  при 𝐵 ≫ ℎ; 

2) гідравлічні характеристики потоку: середня швидкість потоку 𝑉 = 𝑄 𝐴⁄  

(м с⁄ ), витрата води 𝑄 (м3 с⁄ ), ухил водної поверхні fS ;  

3) характеристики шорсткості русла: середній діаметр частинок 𝑑 = ∆  (м) 

дна і берегів, ступінь шорсткості (коефіцієнт шорсткості Гоклера-Меннінга 𝑛 

(с м1 3⁄⁄ )); 

4) виміряні значення коефіцієнта Шезі 𝐶𝑜 (м1 2⁄ с⁄ ) для відповідних умов. 

 

Таблиця 6. Гідроморфологічні дані про характеристики гірських річок, 

використані для навчання та тестування ансамблю ШНМ 

 
Річка, 

ділянка 

русла 

𝑄 

(м3 с⁄ ) 

𝐴 

 (м2) 

𝐵  

(м) 

 ℎ  

(м) 
𝑆𝑓  103 

𝑑  
(м) 

𝑛  
(с м1 3⁄⁄ ) 

𝐶𝑜 
(м1 2⁄ с⁄ ) 

Тиса, Рахів  

(навчання) 

197 70,38 46,85 1,5 0,0055 0,123 0,0344 28,39 

281 89,74 50,6 1,76 0,0055 0,123 0,0344 29,93 

318,33 98,59 52,26 1,88 0,0055 0,123 0,0344 30,49 

Тиса, Рахів  

(тестування) 
225 76,47 48,1 1,59 0,0055 0,123 0,0344 29,08 

Латориця,  

Підполоззя  

(навчання) 

135 55,01 49,66 1,10 0,008 0,142 0,0364 25,80 

156 60,10 51,33 1,16 0,008 0,142 0,0364 26,61 

248 80,26 53,73 1,48 0,008 0,142 0,0364 27,58 

319 95,33 54,46 1,74 0,008 0,142 0,0364 27,74 
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Проловження таблиці 6 

Річка, 

ділянка 

русла 

𝑄 

(м3 с⁄ ) 

𝐴 

 (м2) 

𝐵  

(м) 

 ℎ  

(м) 
𝑆𝑓  103 

𝑑  
(м) 

𝑛  
(с м1 3⁄⁄ ) 

𝐶𝑜 
(м1 2⁄ с⁄ ) 

Латориця,  

Підполоззя 

(тестування) 

114 49,92 48 1,04 0,008 0,142 0,0364 24,99 

177 65,19 53 1,23 0,008 0,142 0,0364 27,42 

Опір, 

Сколе  

(навчання) 

168,5 68,14 44,58 1,525 0,006 0,13 0,035 23,76 

218,5 80,82 47,31 1,70 0,006 0,13 0,035 25,44 

320,5 100,3 50,5 1,975 0,006 0,13 0,035 27,59 

Опір, 

Сколе  

(тестування) 

410 116,6 53 2,2 0,006 0,130 0,035 29,33 

Ріка, 

Міжгір'я  

(навчання) 

178,66 75,72 58,06 1,29 0,005 0,133 0,0366 27,29 

210,33 85,14 59,93 1,41 0,005 0,133 0,0366 28,16 

273 100,76 62 1,62 0,005 0,133 0,0366 29,83 

Ріка, 

Міжгір'я  

(тестування) 

242 94,55 61,8 1,53 0,005 0,133 0,0366 29,04 

304 106,98 62,2 1,72 0,005 0,133 0,0366 30,62 

Чорний 

Черемош, 

Верховина  

(навчання) 

205,5 79,32 56,25 1,41 0,0075 0,251 0,0373 26,1 

227,5 83,02 57,25 1,45 0,0075 0,251 0,0373 26,7 

288 96,47 60,25 1,59 0,0075 0,251 0,0373 27,25 

Чорний 

Черемош, 

Верховина  

(тестування) 

343 108,99 63 1,73 0,0075 0,251 0,0373 27,65 

 

Підготовка та обробка цих даних є критично важливими для забезпечення 

якості навчання та валідації ансамблевої моделі (1)-(9). Формування даних 

входів ансамблю нейронних мереж (𝑥1, 𝑥2, 𝑥3), навчальних і тестових 

прикладів (𝑥1, 𝑥2, 𝑉, 𝐶𝑜) (𝑥1 ∈ {𝑛, ∆, 𝑆𝑓 , 𝐵}, 𝑥2 ∈ {ℎ, 𝑅}, 𝑥3 = 𝑉) передбачало 

побудову інформативних, згладжених, неперервних, нормованих масивів 

вхідних даних з врахуванням статистичної невизначеності (похибки, пропуски 

вимірів тощо). Зокрема, на етапі дослідження предметної області, збору та 

аналізу польових даних про характеристики ділянок річок вилучались з 

розгляду аномальні і неповні набори даних. Такий підхід сприяє точності 

прогнозування коефіцієнта Шезі, як це показано за результатами досліджень 

[31, 32]. 

 

4. Результати та їх аналіз 

 

Пропонуються результати апробації розробленого обчислювального 

алгоритму (табл. 7) на реальних гідрологічних даних (табл. 6). Аналіз включає 

порівняння прогнозів ансамблевої моделі з фактичними виміряними 

значеннями коефіцієнта Шезі. Для кількісної оцінки ефективності моделі 

використані такі метрики, як абсолютна похибка (AП; відносна похибка, ВП) 

та коефіцієнт Неша-Саткліффа (NSE). 
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Процедура тестування ансамблю нейронних мереж полягала у порівнянні 

спостережуваних 𝑄𝑜 і прогнозованих 𝑄𝑝 витрат води. При цьому 𝑄𝑝 

визначалась за допомогою коефіцієнта Шезі С𝑝, обчисленого за допомогою 

ансамблевої моделі (1)-(9) (табл. 7) [1-3, 32]: 

 

𝑄𝑝 = С𝑝𝐴√𝑅𝑆𝑓.            (10) 

 

Для оцінки навичок прогнозування ансамблевої моделі використовувався 

коефіцієнт ефективності моделі Неша-Саткліффа (NSE) [32, 49]: 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑖−𝑄𝑝𝑖)

2𝑘
𝑖=1

∑ (𝑄𝑜𝑖−𝑄̅𝑜)
2𝑘

𝑖=1

,          (11) 

 

де 𝑄𝑜𝑖 та 𝑄𝑝𝑖 – спостережувані та прогнозні значення витрати води на 𝑖-й 

ділянці русла річки, 𝑖 = 1, ..., k; k – кількість отриманих результатів; 𝑄̅𝑜 – 

середнє спостережуваних значень витрати води. Вважають, модель з більшою 

прогностичною здатністю має значення NSE ближче до 1. 

 

Таблиця 7. Результати тестування обчислювального алгоритму ансамблевої 

нейронної мережі 

 

Річка,  

ділянка русла 

 

Коефіцієнт 

шорсткості Шезі C
(м1/2/с) 

Витрата води  

(м3/с) АП  

(м3/с) 
ВП 

(%) 
Оцінка  

𝐶𝑜 за (7) 
Прогноз 

𝐶𝑝  

Виміри,

 𝑄𝑜 
Прогноз, 

𝑄𝑝 
Латориця, 

Підполоззя 
25,04 25,5430 114 116,31 2,3 2,0 

Латориця, 

Підполоззя 
27,37 27,5534 177 178,18 1,2 0,7 

Тиса, Рахів 31,46 29,5386 225 211,26 13,7 6,1 

Ріка, Міжгір'я 29,26 29,5387 242 244,29 2,3 0,9 

Ріка, Міжгір'я 30,64 29,5389 304 293,06 10,9 3,6 

Чорний 

Черемош, 

Верховина 

27,63 27,5535 343 342,07 0,9 0,3 

Опір, Сколе 30,61 29,5392 410 395,72 14,3 3,5 

 

Запропонована ансамблева модель демонструє кращу точність та 

стабільність прогнозів порівняно з індивідуальними нейронними мережами, 

що є типовою перевагою методу Bagging. Зокрема, у попередньому 

дослідженні [32] за результатами застосування індивідуальної нейронної 

мережі для обчислення коефіцієнт Шезі на основі польових даних про 

характеристики гірських річок показано, що NSE = 0,939, відносні похибки 

прогнозованих значень витрати води 𝑄𝑝 коливались в межах 0,3% ÷ 12,4%. 

В цьому дослідженні для ансамблю нейронних мереж отримано NSE = 0,991, 
відносні похибки обчислених прогнозів знаходяться в межах 0,3% ÷ 6,1%.  
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На нашу думку, отримано досить хороші результати застосування 

ансамблю нейронних мереж для прогнозування коефіцієнта шорсткості Шезі, 

що спонукають до подальших досліджень. Зокрема, планується провести 

аналіз чутливості запропонованого ансамблю нейронних мереж до варіацій 

вхідних параметрів та дослідити його здатність до узагальнення на 

синтетичних даних. Також маємо намір розглянути вплив кількості 

нейронних мереж в ансамблі та архітектури окремих мереж на загальну 

ефективність. 

 

5. Висновки 

 

Результати показують, що запропонована обчислювальна модель для 

прогнозування емпіричного коефіцієнта гідравлічного опору Шезі для 

відкритих русел на основі ансамблевого навчання трьох нейронних мереж 

дозволяє отримати прогнози з достатньою для практики точністю та зменшити 

похибки у порівнянні з індивідуальною моделлю нейронної мережі, яка була 

апробована в [31, 32]. Зокрема, для гідроморфологічних умов гірських річок 

відносні похибки прогнозів отримано в межах 0,3% ÷ 6,1%, коефіцієнт 

ефективності моделі Неша-Саткліффа = 0,991. Використання методу Bagging 

та агрегування прогнозів (на основі оберненої задачі) значно підвищує 

надійність та узагальнюючу здатність моделі. Цей підхід є перспективним для 

застосування в гідравлічному моделюванні та управлінні водними ресурсами, 

зокрема, математичному моделюванні річкових потоків для оцінки ерозійних 

процесів і руслових деформацій, проєктування річкових берегозахисних 

споруд, прогнозування наслідків паводків і затоплень [10].  
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