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DO WE NEED A MORE SOPHISTICATED
MULTILAYER ARTIFICIAL NEURAL NETWORK
TO COMPUTE ROUGHNESS COEFFICIENT?

Abstract. Artificial neural networks (ANNs) are one of the most rapidly growing
fields of soft computing. Along with deep learning, they are currently the most
widely used machine learning techniques. Artificial neural networks are especially
suitable for problem-solving where a researcher deals with incomplete data sets and
no algorithms or specific sets of rules to be followed.
This article deals with a case of comparison of several modifications of neural
networks that may be applied to compute Chézy’s roughness coefficient. Neural
network modelling is often started with one hidden layer. Having even one hidden
layer, a neural network presents a powerful computing system to give good results.
If it is necessary, the number of hidden layers may increase. Usually, two or three
hidden layers of neurons are used. Diverse activation functions may also apply. The
article aims to explore the necessity of developing sophisticated multilayer artificial
neural networks to compute Chézy’s roughness coefficient.
Under the study, the following modifications of the neural network computing
Chézy’s roughness coefficient were considered and analysed.: (1) Application of two
hidden layers of neurons; (2) Application of three hidden layers of neurons; (3) Use
of a dropout algorithm for training neural networks by randomly dropping units
during training to prevent their co-adaptation; (4) Apart from the sigmoid (logistic)
activation function, the use of other artificial neuron transfer functions — hyperbolic
tangent (tanh) and rectifying activation function (ReLU).
The training and testing of the considered neural network options were carried out
using the actual hydro-morphological and hydrological data related to the channel
section on the Dnieper River (downstream of Kyiv), the Desna River section near
Chernihiv, and the Pripyat River section near the town of Turiv. The Python object-
oriented programming environment was applied to build and train the neural
networks. The test results confirm the acceptability and sufficiency of computing the
Chézy roughness coefficient using the ANN of direct propagation with one hidden
layer and a sigmoid logistic activation function. The formation of a qualitative set
of training data, as well as data arrangement and choosing a relevant computing
model based on empirical knowledge, are, as concluded, among more actual issues
than creating more sophisticated neural networks.
Keywords: activation functions, artificial neural networks, Chézy’s roughness
coefficient, comparison, dropout algorithm, hidden layers, modifications, neurons
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1. Introduction

Avrtificial neural networks (ANNSs, neural networks, neural computing) present one
of the most popular fields of so-called soft computing that deals with approximate
models and using inexact solutions [1-5]. Soft computing is not a single method of
solving diverse tasks and problems using computing. It is a holistic approach that
uses probabilistic models, multivalued and fuzzy logic, neural networks, and
evolutionary (genetic) algorithms (Fig. 1) and their hybridizations [5-7].

Hard computing Soft computing
Exact models Approximate models
Symbolic logic Numerical Approximate Approximate
reasoning modelling reasoning modelling
Probabilistic
models
Multivalied and Neural Evolutionary
Fuzzv Logics MNetworks Algorithms

Fig. 1. Approaches to solving problems using computing

According to L. Zadeh [1], the point of departure in soft computing is the thesis
that precision and certainty carry a cost and that computation, reasoning, and
decision-making should exploit — wherever possible — the tolerance for imprecision
and uncertainty. Soft computing is a flexible tool for mathematical modelling. Being
a flexible tool for modelling and forecasting real-world phenomena [5], soft
computing is used in various fields of human activity, such as economy, environment
[5, 8, 9], engineering, science, medicine, etc. [1, 10-13].

Neural computing is one of the most rapidly growing fields of soft computing.
Especially, ANNs are highly suitable for solving complex problems where there are
no algorithms or specific sets of rules to be followed. Along with deep learning, they
are currently the most widely used machine learning techniques [14-16]. Neural
computing is developed as an integral part of artificial intelligence and data science
[15, 17, 18]. The most typical application areas of ANNs are pattern and data
recognition, image and speech processing and recognition, machine translation, and
medical diagnosis. Essentially, ANNs have become a successful forecasting method
used in diverse applications [8-10, 18-20]. It is because ANNs have several
advantages compared with other forecasting methods [2, 3, 18-20]: results depend
on the accuracy of available data; ANNs deal with incomplete data sets; neural
computing is an adaptive method; ANNSs can learn without any prior assumption;
they are non-linear models with good generalization ability.
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This article deals with the case of comparison of several modifications of ANNs
to compute the Chézy coefficient. Chézy’s roughness coefficient is a hydraulic
integral empirical characteristic controlling the hydraulic resistance to open flows in
river channels. The challenge is that it may not be determined directly using field
measurements or experimentally. To determine the Chézy coefficient, many
empirical formulas have been developed [21], usually dealing with incomplete data
sets. As practice shows, the appropriate formula choosing can become a challenge
for researchers. Therefore, in [22], we proposed to solve the problem using an
artificial neural network. It was a multilayer perceptron of direct propagation with
one hidden layer and a sigmoid logistic activation function. That network showed
good predictive skills in the condition of correct studying of the subject area and
relevant input data arrangements [22].

As known, the basic structure of a multilayer ANN (a multilayer perceptron)
consists of an input layer, one or more hidden layers, an output layer, an activation
function and a set of weights and biases. In a fully connected neural network, each
neuron in one layer is connected to all neurons in the next layer. Neurons of the input
layer in such networks transmit input signals to the first hidden layer without
converting them. In hidden neurons, sequentially, layer by layer, there is a nonlinear
conversion of signals. Each network neuron produces a weighted sum of its inputs,
passes this value through the activation function and gives the output value. Signals
from the last hidden layer arrive at the neurons of the output layer, which eventually
form the ANN response [14, 19, 20, 22-24].

The modelling is often started with one hidden layer [14]. Having even one
hidden layer, the ANN is a powerful computing system [25], giving good results
[22]. If it is necessary, the number of hidden layers may increase. Usually, two or
three hidden layers of neurons are used [14, 23-26]. Diverse activation functions may
also be applied. That is how researchers try to improve the ANN performance. This
article aims to answer the question of whether we need to develop a more
sophisticated multilayer artificial neural network to compute Chézy’s roughness
coefficient within the computing model that was proposed in [22].

2. Computing model, the basic structure and considered modifications of the
neural network computing Chézy’s roughness coefficient

2.1. Computing model and the basic structure of the ANN computing Chézy’s
roughness coefficient

In [22], the following computing model was proposed for calculating the Chézy

coefficient C within the fully connected ANN of direct propagation with one hidden
layer and a sigmoid logistic activation function:

C=f(xy, x2), (1)
x; € {n,4,S, B}, x, € {h, R}, 2)
where n is the Gauckler-Manning roughness coefficient; A is the height of

protrusions of roughness; S¢ is the water surface slope; B is the average flow width;
h is the average flow depth; R is the hydraulic radius. It was assumed that
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multicollinearity between the hydro-morphological parameters n, S¢, B, 4, h, and R
could be neglected.

The basic structure of the ANN proposed in [22] for computing the Chézy
coefficient C consists of two input neurons, four hidden layer neurons, and one
output layer neuron (Fig. 2).

Input layer Output layer
(xuxz ): 4 N
X, E{n,d,S,,B}, C:ZIF(SJ)'H:L_J!J"ZI
x, € R}
Hidden layer
H W' 7{1411)’!:?,]:?} I*'(s ) sz{“{n,l:r,jzl} W
)
> 5, = > x,~14'i”,j=l,_4
i=1

Fig. 2. Flow-chart showing the architecture of the ANN computing Chézy’s coefficient C
according to [22]

The ANN uses a direct propagation network model with a linear source neuron
[22]; the sigmoid (logistic) activation function is applied to the neurons of the hidden
layer [14, 22]:

FS) = 1o 3)

and its first derivative
F'(s) =B -F(s)(1—F(s)), (4)

where the parameter § influencing the steepness of the transition is equal to 1.
According to the ANN [22], receiving the (x;, x,) values, the input layer
transmits them (without conversion) to the next layer of neurons using the weight

matrix Wt = {wi(jl), i=12j= ﬁ} containing the weight values wi(jl) of inputs
for the hidden layer neurons. Afterwards, the hidden layer containing four neurons
calculating the weighted sum s; = Y2 X wl.(jl) conducts this sum value through
the activation function F(sj), and transmits the resulting value using the weight

matrix W? = {wi(jz),
contains the weight values wi(].z)of relationships of each hidden layer neuron with the
output neuron. The output layer contains one neuron in which the weighted sum of
its inputs is calculated, and Chézy’s coefficient C value is thereby determined.

i=14,j= 1} to the output layer. The weight matrix W?2
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2.2. Considered modifications of the ANN

Under the study, the following modifications of the neural network computing
Chézy’s roughness coefficient were considered and analysed:

1) Application of two hidden layers of neurons;

2) Application of three hidden layers of neurons;

3) Use of a dropout algorithm for training neural networks by randomly dropping
units during training to prevent their co-adaptation [27];

4) Apart from the sigmoid (logistic) activation function (3), the use of other
artificial neuron transfer functions (activation functions) — hyperbolic tangent (tanh)
and rectifying activation function (ReLU — Rectified Linear Unit) [29].

Having the same S-shape, the hyperbolic tangent activation function (tanh) is very
similar to the sigmoid (logistic) function (3).

The equation for tanh is:

2
1+e=2s

F(s) = tanh(s) = 5)

Its first derivative is:
F'(s) =1—F(s)? (6)

Compared to the sigmoid function, the hyperbolic tangent activation function
produces a more rapid rise in result values [15, 16, 28].

The ReLU function is the most commonly used activation function in deep
learning models. The function returns 0 if it receives any negative input, but for any
positive value s it returns that value back. The equation for ReLU is:

0, s<0
F(s) = {S, s=0. )
The ReLU first derivative is:
. 0, s<0
FO={ ;0. ®)

The sigmoid and hyperbolic tangent activation functions cannot be used in
networks with many layers due to the vanishing gradient problem. The rectified
linear activation function overcomes the vanishing gradient problem inhering,
allowing models to learn faster and perform better [29].

3. Materials and methods

The training and testing of the considered neural network options were carried out
using the actual hydro-morphological and hydrological data related to the channel
section on the Dnieper River (downstream of Kyiv), the Desna River section near
Chernihiv, and the Pripyat River section near the town of Turiv. The chosen river
sites are characterized by a straight earthen channel with a simple cross-sectional
shape and calm flow (the Froude number, Fr<<1). The limits of change of
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hydrological and hydro-morphological parameters are the following [22]: the water
discharge Q = 48.8 + 3665.0 m®s; the average flow velocity V = Q/A= 0.336 +
0.968 m/s, where A is the cross-sectional area of the flow (m?); the water surface
slope S = 0.000036 + 0.00016; the average flow depth h = 1.0 + 6.2 m; the average
flow width B = 122.0 ~ 611.0 m; the Manning roughness coefficient n = 0.027 +
0.045 (s/m'?); the identified (observed) Chézy roughness coefficient C, = 27.0 +
43.7 (m*?/s). The input data is summarised in Table 1.

Table 1. Input data used in the training and testing of the considered neural network
options

Hydrological and hydro-morphological parameters:

Qo A B h n Co
(m3/s) (m?) | (m) | (m) (s/m¥3) | (mY%s)
657.4 1956 | 575 | 3.4 0.046 0.045 27.0
1123 2403 | 586 | 4.1 0.054 0.040 314
3665 3787 | 611 | 6.2 0.079 0.031 43.7

Dnieper7 downstream 1763 2858 595 | 4.8 0.063 0.036 35.6

Rivers, channel

sections Sy 10°

Dnieper, downstream
of Kyiv (training)

of Kyiv (testing) 2601 | 3320 [604 | 55 | 0.071 0.033 39.7

188 501.8 | 125 | 4.0 | 0.036 0.041 | 311
Desna, Chernihiv 249.4 580 | 129 | 45 | 0.040 0.040 | 32.2
(training) 4037 | 7424 |135| 55 | 0.046 0.039 34.2

497.5 826.3 | 138 | 6.0 0.049 0.038 35.1

Desna, Chernihiv

. 321.2 660.3 | 132 | 5.0 0.043 0.039 333
(testing)

48.8 122 122 | 1.0 0.16 0.032 31.6
89 1954 | 130 | 1.5 0.128 0.033 32.9

Pripyat, Turiv

(training)

248.6 | 437.3 | 146 | 3.0 | 0.087 0.034 35.1
Pripyat, Turiv 136,3 273 | 136 | 20 | 0.109 0.033 33.8
(testing) 189.7 | 353.8 | 142 | 25 | 0.097 0.034 345

Training data samples consisted of normalized values of the characteristics
obtained with uniform linear interpolation in the vicinity of the observed values of
parameters. Numerical data were converted in such a way as to obtain their model
values varying in the range between 0 and 1 [22]. The test cases observed values
were not included in the training samples.

The Python object-oriented programming environment [23, 24, 30] was applied
to build and train the considered options of the neural network. The software
implementation of the computational algorithms is given in [31].

The weight coefficients of the considered ANN options were adjusted on a series
of real case examples of (x;, x,) values in such a way as to achieve a reduction in
the error between the predicted (computed) C,, and observed (reference) C,, estimates
of Chézy’s roughness coefficient C. The reference C, values were calculated on
actual data (Table 1) according to the Chézy formula:
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_ Qo
)= e ©)

The initial values of the weight coefficients were set randomly, close to zero. At
each iteration step (learning epoch), at the ANN entrance, training examples were
input and the neural network outputs were computed. The obtained results were
further compared with the reference values with error estimating. For the neurons of
each hidden layer, the network error was calculated. The obtained error values were
used to recalculate weight coefficients according to the inverse error propagation
algorithm [14, 23, 24]. Then, the transition to the next learning epoch was performed.
When the required number of epochs was fulfilled, or the computational error
amounted to an acceptable value, the algorithm was stopped.

The testing of the considered ANN options was carried out according to the actual
data of observations (Table 1), which were not used in the network training. The
testing procedure consisted of a comparison of the actual (observed, gauged) Q, and
computed (predicted) @, water discharges:

Qy=C, AJR-S;, (10)

where C,, is the predicted (computed using the ANN) Chézy coefficient value.

To assess the forecast (predictive) skill of the considered ANN options, the Nash-
Sutcliffe model efficiency coefficient (NSE) was used [32]:

21'6=1(Q0,i_Qp,i)2

NSE = 1 - A I
2?:1(Qo,i_Qo)

(11)
where Q,;, Qp,; are observed and predicted water discharges for a river channel
section i, i = 1,6; Q, is the mean of the observed discharges Q, ;.

4, Results

In general, a multi-layer direct propagation neural network for computing the Chézy
coefficient within the model (1) and (2) works as follows. The input layer receives
the predictors (x;, x,) values and transmits them without conversion to the next

layer of neurons using the weight matrix W= {wi(jl), i=12,j= 1,m}

containing the weight values wl.(jl) of inputs for all hidden layer neurons, where m is
the number of artificial neurons in the hidden layer. The hidden layer containing
neurons, each of which computes a weighted sum sj = i2=1xi . wl.(jl), j=1m,
relating to its input data, conducts this sum value through the activation function

yj(l) = F(sj), and transmits the obtained value to the next layer, etc. The weight

matrix W¢=t = {wl.(f_l), i=1m, j= 1} contains the value of the weight of

connections of each neuron of the previously received layer with the original neuron,
where £ is the total number of layers of a multilayer ANN. For a neural network with
two hidden layers, ¢ = 4; with three hidden layers, ¢ = 5. The output layer contains
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one neuron in which the weighted sum of its inputs is calculated, and Chézy’s

coefficient value is determined: C = Y%, F(s;) - wl.(f_l),j = 1.
The results of using different options of a multilayer neural network of direct
propagation for calculating Chézy’s coefficient within the computing model

framework according to equations (1) and (2) are given in Tables 2, 3, and 4.

Table 2. Results of using different options for the number of hidden layers and
neurons with the sigmoid activation function (learning factor is 0.002)

The number of: Activation The number Duration of I

hidden | neurons function of learning | calculations*, 5

layers m epochs sec m™/s
1 4 100 <1 34.1149
2 4 100 <1 34.1151
2 8 . . 49 <1 34.1166
2 16 Si,?m_o'ld’ 24 <1 34.1166
3 4 100 ~1 34.1157
3 8 47 <2 34.1166
3 16 18 <2 34.1170

*The duration of computing is conditional; it depends on the computer equipment’s power

Table 3. Results of using different options for the number of hidden layers, neurons,
and the different activation functions (learning factor is 0.002)

The number of: Activation The num_ber Duratic_Jn of C
hidden | neurons function of learning | calculations*, mlyz’/s
layers m epochs sec
1 4 Sigmoid, S =1 100 <1 34.1149
2 8 Sigmoid, B =1 49 <1 34.1166
2 8 Sigmoid, § =2 47 <1 34.1165
2 8 Sigmoid, § =5 45 <1 34.1168
2 8 Sigmoid, 8 =10 48 <1 34.1168
2 8 Sigmoid, B =11 48 <1 34.1166
2 8 Sigmoid, B =12 48 <1 34.1164
3 8 Sigmoid, § =1 47 <2 34.1166
3 8 Sigmoid, § =2 43 <2 34.1168
3 8 Sigmoid, B =5 38 <2 34.1169
3 8 Sigmoid, B =10 38 <2 34.1193
2 8 tanh 49 <1 ~0
3 8 tanh 47 <2 ~0
2 8 ReLU 49 <1 0
3 8 ReLU 47 <2 0

*The duration of computing is conditional; it depends on the computer equipment’s power

Table 2 shows the results of using the considered neural network options for the
number of hidden layers and neurons with the sigmoid activation function. Table 3
gives the results of using the different considered ANN options including the number
of hidden layers, neurons, and the different activation functions — sigmoid with
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various B values, hyperbolic tangent (tanh) and rectifying (ReLU) ones. The results
of using a dropout algorithm for training the considered ANN options are given in
Table 4.

Table 4. Results of using a dropout algorithm for training the considered ANNs by
randomly dropping units during training

The number of: The number C
hidden | neurons Dropping units in hidden layers: of learning s
layers m epochs m*/s
1 4 not applied 100 34.1149
1 8 applied 155 31.3485
1 16 applied 125 33.3661
not applied 49 34.1166
2 8 applied, but separately for each layer 53 30.1830
applied, same for all layers 53 30.7412
applied, but only for the first hidden layer 45 34.1177
not applied 24 34.1166
2 16 applied, but separately for each layer 25 31.1932
applied, same for all layers 25 31.4216
applied, but only for the first hidden layer 21 34.1187
not applied 47 34.1166
3 8 applied, but separately for each layer 60 31.2421
applied, same for all layers 55 31.2433
applied, but only for the first hidden layer 43 34.1168
not applied 18 34.1170
3 16 applied, but separately for each layer 30 33.9920
applied, same for all layers 18 33.8473
applied, but only for the first hidden layer 16 34.1140

For all the considered ANNSs (Table 4), the sigmoid activation function (3) was
applied. The learning factor was 0.002.

5. Discussion

Analysing the results, it can be emphasised that the standard hyperbolic tangent
(tanh) and rectifying (ReLU) activation functions appeared to be irrelevant for
approximating the Chézy coefficient according to the computing model of (1) and
(2). In this case, additional settings and modifications are needed to use these
functions to obtain the desired results when calculating the Chézy roughness
coefficient. This task may be the aim of future research.

The increase in the number of hidden layers and neurons contributes to the fact
that the neural network within the model of (1) and (2) learns faster (the number of
learning epochs tends to decrease). However, this practically did not affect the results
of the Chézy coefficient computing.

To approximate the Chézy roughness coefficient function C = f (x4, x,), x; €
{n,4,S,B}, x, € {h,R} [22], it may be enough to use the fully connected ANN of
direct propagation with one hidden layer and a sigmoid logistic activation function.
In particular, in this case study, the Nash-Sutcliffe model efficiency coefficient
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(NSE) varied between 0.94-0.98. It can signify the forecast (predictive) skill of the
ANN is quite high.

In turn, the relative prediction errors E,. (%) of forecasting water discharges
varied between 0.9-13.9% depending on rivers and river channel sections (Table 1),
where:

E, = IQOQ Q|

[

-100%, (12)

where @, and @, are the observed and predicted values of water discharges. It may
also indicate the high performance of the ANN of direct propagation with one hidden
layer and a sigmoid logistic activation function [22] in computing the Chézy
roughness coefficient as an integral empirical characteristic of hydraulic resistance
to open flows in river channels [21].

In addition, in applying the sigmoid activation function, the accuracy of
forecasting the Chézy coefficient values was determined using the relative prediction
errors E,. (%):

E, = 5%l 1000, (13)

Co

where C, is the average observed (identified) value and C,, is the average predicted
value of Chézy’s coefficient.

When using the sigmoid logistic activation function, the relative prediction errors
of forecasting the Chézy coefficient values varied between 3.56-3.58% depending
on the considered ANN options. Thereby, the answer to the question of whether we
need to develop a more sophisticated multilayer artificial neural network to compute
Chézy’s roughness coefficient may be the next. When applying the computing model
of C = f(xy, x2), x1 € {n, 4,5, B}, x, € {h, R} [22], it is recommended to use the
ANN options of direct propagation with one or two hidden layers and a sigmoid
activation function. More important in this case may be the formation of a qualitative
set of training data.

6. Conclusions

Under the study, to explore the necessity of developing more sophisticated
multilayer artificial neural networks to compute Chézy’s coefficient, the following
modifications of the neural computing were considered and analysed:
(1) Application of two hidden layers of neurons; (2) Application of three hidden
layers of neurons; (3) Use of a dropout algorithm for training neural networks by
randomly dropping units during training to prevent their co-adaptation; (4) Apart
from the sigmoid (logistic) activation function), the use of other artificial neuron
transfer functions (activation functions) — hyperbolic tangent (tanh) and rectifying
activation function (ReLU — Rectified Linear Unit). The training and testing of the
considered neural network options were carried out using the actual hydro-
morphological and hydrological data related to the channel section on the Dnieper
River (downstream of Kyiv), the Desna River section near Chernihiv, and the Pripyat
River section near Turiv.
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The test results confirm the acceptability and sufficiency of computing the Chézy
roughness coefficient using the ANN of direct propagation with one hidden layer
and a sigmoid logistic activation function. The formation of a qualitative set of
training data, as well as data arrangement and choosing a relevant computing model
based on empirical knowledge, as revealed, are among more actual issues than
creating more sophisticated neural networks.

REFERENCES

1. Zadeh, L.A. (1994). Fuzzy logic, neural networks and soft computing. Fuzzy Systems.
Communications of the ACM, Vol. 37, No. 3, 77-84.

2. lbrahim, D. (2016). An overview of soft computing. Procedia Computer Science, 102,
34-38. https://doi.org/10.1016/j.procs.2016.09.366

3. Bele, S.B. (2020). The concept of soft computing. International Journal of Recent
Advances in Multidisciplinary Research, Vol. 07, Issue 03, 5623-5625.

4. Carlos, M. (2022). Characteristics of Soft Computing and its Applications. Int. J. of
Swarm Intelligent and Evolutionary Comp. 11:275. https://doi.org/10.35248/2090-
4908.22.11.275

5. Soft computing approach for mathematical modeling of engineering problems. (2022).
Ed. by A. Ahmadian, and S. Salahshour. CRC Press. Taylor & Francis Group, London, N.Y .,
203 p.

6. Singh, Ju. (2016). A Parameterized Comparison of Fuzzy Logic, Neural Network and
Neuro-Fuzzy System: A Literature. International Journal of Computer Science and Mobile
Computing, Vol. 5, Issue 5, 478-482.

7. Thakur, A., Dhiman, K., and Phansikar, M. (2021). Neuro-Fuzzy: Artificial Neural
Networks & Fuzzy Logic. International Journal for Research in Applied Science &
Engineering Technology, Vol. 9, Issue 1X, 128-135.

8. Haghbin, M., Sharafati, A., Motta, D. et al. (2021). Applications of soft computing models
for predicting sea surface temperature: a comprehensive review and assessment. Progress in
Earth and Planetary Science, 8:4. https://doi.org/10.1186/s40645-020-00400-9

9. Adnan, R.M., Meshram, S.G., Mostafa, R.R., et al. (2023). Application of Advanced
Optimized Soft Computing Models for Atmospheric Variable Forecasting. Mathematics, 11,
1213. https://doi.org/10.3390/math11051213

10.Pham, B.T., Nguyen, M.D., Al-Ansari, N. et al. (2021). A Comparative Study of Soft
Computing Models for Prediction of Permeability Coefficient of Soil. Mathematical
Problems in Engineering, Vol. 2021, 7631493. https://doi.org/10.1155/2021/7631493

11. Redjimi, H., and Tar, J.K. (2021). A Simple Soft Computing Structure for Modeling and
Control. Machines, 9, 168. https://doi.org/10.3390/machines9080168

12. Afaq, H., and Saini, S. (2011). Swarm Intelligence based Soft Computing Techniques for
the Solutions to Multiobjective Optimization Problems. International Journal of Computer
Science Issues, Vol. 8, Issue 3, No. 2, 498-510.

13. Soft Computing: Recent Advances and Applications in Engineering and Mathematical
Sciences. (2023). Edited by P. Debnath, O. Castillo, and P. Kumam. CRC Press. Taylor &
Francis Group, London, N.Y., 233 p.

14. Haikin, S. (2008). Neural Networks and Learning Machines (3rd Edition), Prentice Hall,
906 p.

15. Choi, R.Y., Coyner, A.S., Kalpathy-Cramer, J., Chiang, M.F., and Campbell, J.P. (2020).
Introduction to machine learning, neural networks, and deep learning. Trans Vis Sci Tech.,
Special Issue, Vol. 9, No. 2, Article 14:2. https://doi.org/10.1167/tvst.9.2.14

16.Taye, M.M. (2023). Understanding of Machine Learning with Deeplearning:
Architectures, Workflow, Applications and Future Directions. Computers, 12, 91.
https://doi.org/10.3390/computers12050091

ISSN: 2411-4049. Exosoriyna Ge3rneka Ta IpUpOJOKOPUCTYBaHHs, BuIL 4 (48), 2023



~ 181 ~

17.Russell, S.J., and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. 3rd ed.
Pearson Education, Inc.: Upper Saddle River, New Jersey, 1132 p.

18. Dhar, V. (2013). Data science and prediction. Communications of the ACM 56 (12): 64.
https://doi.org/10.1145/2500499

19. Zhang, G., Patuwo, B.E., Hu, M.Y. (1998). Forecasting with artificial neural networks:
The state of the art. International Journal of Forecasting, 14, 35-62.
https://doi.org/10.1016/S0169-2070(97)00044-7

20. Montafio Moreno, J.J., Pol, A.P., and Gracia, P.M. (2011). Artificial neural networks
applied to forecasting time series. Psicothema, Vol. 23, No 2, 322-329.

21. Stefanyshyn, D.V., Khodnevich, Y.V., Korbutiak, V.M. (2021). Estimating the Chezy
roughness coefficient as a characteristic of hydraulic resistance to flow in river channels:
a general overview, existing challenges, and ways of their overcoming. Environmental safety
and natural resources, 39(3), 16—43. https://doi.org/10.32347/2411-4049.2021.3.16-43
22.Khodnevych, Y.V., Stefanyshyn, D.V. (2022). Data arrangements to train an artificial
neural network within solving the tasks for calculating the Chézy roughness coefficient under
uncertainty of parameters determining the hydraulic resistance to flow in river channels.
Environmental safety and natural resources, 42(2), 59-85. https://doi.org/10.32347/2411-
4049.2022.2.59-85

23.Chollet, F. (2018). Deep Learning with Python. Manning Publications Co., 384 p.

24. Trask, A.W. (2019). Grokking Deep Learning. Manning Publications Co., 336 p.
25.Cybenko, G.V. (1989). Approximation by Superpositions of a Sigmoidal function.
Mathematics of Control, Signals and Systems, Vol. 2, No. 4, 303-314.

26. Keim, R. (2020). How Many Hidden Layers and Hidden Nodes Does a Neural Network
Need? Available from https://www.allaboutcircuits.com/technical-articles/how-many-
hidden-layers-and-hidden-nodes-does-a-neural-network-need/

27.Baldi, P., and Sadowski, P. (2014). The dropout learning algorithm. Artificial
Intelligence, 210, 78-122. http://dx.doi.org/10.1016/j.artint.2014.02.004

28.Nielsen, M. Neural Networks and Deep Learning, 224 p. Available from
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf

29. Brownlee, J. (2019). A Gentle Introduction to the Rectified Linear Unit (ReLU). In Deep
Learning Performance. Available from https://machinelearningmastery.com/rectified-linear-
activation-function-for-deep-learning-neural-networks/

30.Muller, A., and Guido, S. (2016). Introduction to Machine Learning with Python,
Published by O’Reilly Media, 378 p.

31.Khodnevych, Ya. (2022). The software implementation of a neural network
computational algorithm for predicting the Chézy roughness coefficient. Available from
https://github.com/yakhodnevych/ANN_approximation_C

32.Nash, J.E., and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models
part I — A discussion of principles, Journal of Hydrology, 10 (3), 282-290.
https://doi.org/10.1016/0022-1694(70)90255-6

The article was received 05.09.2023 and was accepted after revision 29.11.2023

SA.B. XonneBuy, 11.B. Crepanummn
Yu motpidHa HaM OiibII cKjIagHA OaraTomiapoBa MITYYHA HeWpPOHHA Mepe:ka s
o0uHc/IeHHs KoedilieHTa mopcTKocTi?

Anotanig. Itygni HeHpoHHI MepexXi € OIHI€I0 3 HAMOULIBII IIBHAKO 3POCTAIOYHX
obmacreii M’skux obuucieHs. [lopan 3 raMOOKMM HaBYaHHAM BOHHM HAaTemep IIHUPOKO
BUKOPHUCTOBYIOThCS IIPH MAIIMHHOMY HaB4aHHi. HeiipoHHi Mepexi 0coOIMBO MiIXOIATh ISt
BUpIIIEHHS 3aBIaHb, Ji¢ JOCIHIAHUKY JAOBOAMTBHCS MaTW CIpaBy 3 HEIMOBHUMH Habopamu
JIaHUX 1 BiICyTHI anroputMu abo cneuudiyni Habopu NpaBwJl, SIKUX CIIL JOTPUMYBATHCSI.

VY craTTi po3risAaeThCs MOPIBHIHHS AEKIIbKOX Moandikanii HEWPOHHUX MEpex, SKi
MOXYTb 3aCTOCOBYBATHCS [Ulsi 00uncieHHs koedinienTta mopcerkocti Ile3i. MoaemoBanus
HEHPOHHOI MEpeXi YacTO TOYMHAETHCSA 3 OJHOTO INMPHXOBaHOro Imapy. HaBith 3 ogHMM
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MIPUXOBAHUM IIapOM HEWPOHHA MEpeXka € MOTYXKHOI0 OO0YHCIIOBAILHOIO CHUCTEMOIO, SKa
MOXE JaTH XOpoul pe3ynbTraTH. [Ipy HEeoOXigHOCTI KUIBKICTh HNPHUXOBAaHHMX MHIAPIB MOXKeE
30iTpITYBaTHCS. 3a3BHYail BUKOPUCTOBYIOTHCS Ba a00 TPW MPUXOBAaHUX IIapH HEHPOHIB.
TakoX MOXYTh 3aCTOCOBYBAaTHCS pi3HI (yHKIii aktuBamii. L[g1 cTtarts Mae Ha MerTi
JOCIITUTH, 91 TIOTPIOHO PO3POOIATH OB CKIaIHYy HEMPOHHY MEpEeXy IUIA NPAaKTUIHUX
obunciens koedimieHTa mopcerkocti [lesi.

B pamkax mpoBeZeHOTo AOCTiIKEHHS OyIIo pO3TISHYTO Ta MPOAHATI30BaHO HACTYITHI
Monmudikamii HEHpoHHOI Mepexi, ska obOuncmoe xkoedimienT mopcTrocti [esi:
(1) 3acTocyBaHHs JBOX MPHUXOBaHKX IApiB HEUPOHIB; (2) 3aCTOCYBaHHS TPHOX MPUXOBAHUX
miapiB HeWpoHiB; (3) BUKOpHCTaHHs Aropout anropuTMy Ui HABYAHHS HEHPOHHHX MEPEx
[IISXOM BHIAIKOBOIO CKUAAHHS OAWHHIG ITiJ] Yac HABUYAHHS, 00 3amo0irT iX CHiIbHIN
ananraii; (4) kpiM curmoigHoi (ytorictnuHoi) GyHKUii akTHBAil — BUKOPUCTAHHS 1HIINX
(byHK1i# — rinepbosiyHoro TaHreHca (tanh) i Bunpsmisirouoi ¢pynkuii akrusanii (ReLU).

HaBuaHHS Ta TecTyBaHHsS PO3IVIIHYTHX BapiaHTIB HEHPOHHOI Mepexi MPOBOAWIOCA 3
BHKOPUCTAHHAM (PaKTHYHUX TiAPO-MOPQOJIOTIYHIX Ta TiAPOJOTIYHUX NaHWX Ha TUITHKAX
pycia Ha pigni Jrinpo (Hmkde 3a Tedieto Kuesa), piuku JlecHa Oinst UepHiroa ta AiITHKA
piuxu [pum’ste mo6muzy M. Typis. g moOymoBu Ta HaBYaHHS HEUPOHHHUX MEPEX OyIo
3aCTOCOBaHO 00'€KTHO-Opi€HTOBaHE cepepoBuIle mporpamyBaHHs Python. Otpumani
pe3yIbTaTH MOKA3yIOTh, MO Uil oO04YucieHHs KoedimieHTa mopctkocTi le3i Moxe OyTu
noctaTHiM BukopuctoByBatu [IIHM mpsiMoro mommpeHHs: 3 OMHUM MPUXOBAaHUM LIAPOM i
CUrMOifHOW (yHKIi€l0 akTuBauii. @opMyBaHHS SKICHOrO HAOOpy HaBYAIBHUX JAHHX, a
TaKOX OpraHizalis JaHUX 1 BUOIp BiJMOBIIHOT OOYKMCIIOBAJIBHOI MOZENI, 3aCHOBAHOI Ha
eMITIPUYHUX 3HAHHSX, € B LOMY BHUMAJKy OJHI€I0 3 OUIBLI aKTyalbHUX MPoOieM, Hix
CTBOpPEHHS O1IbII CKJIaHUX HEHPOHHHUX MEPEXK.

Koarouosi cioBa: ¢ynkuii aktuBauii; mrydHi HeWpoHHI Mepexi; koediuieHt Illesi;
nopiBHAHHS; droOpouUt aropuT™; NPUXOBaHI MapH; MoIUdiKallii; HEHPOHHU.
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