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Abstract. Discovery of g-regular tree description in terms of an infinite system of
quadratic equations over finite field Fg had an impact on Computer Science, theory
of graph based cryptographic algorithms in particular. It stimulates the
development of new graph based stream ciphers. It turns out that such encryption
instruments can be efficiently used in GIS protection systems which use N-Tier
Architecture. We observe known encryption algorithms based on the
approximations of regular tree, their modifications defined over arithmetical rings
and implementations of these ciphers. Additionally new more secure graph based
ciphers suitable for GIS protection will be presented.

Algorithms are constructed using vertices of bipartite regular graphs D(n,K)
defined by a finite commutative ring K with a unit and a non-trivial multiplicative
group K*. The partition of such graphs are n-dimensional affine spaces over the
ring K. A walk of even length determines the transformation of the transition from
the initial to the last vertex from one of the partitions of the graph. Therefore, the
affine space Kn can be considered as a space of plaintexts, and walking on the graph
is a password that defines the encryption transformation.

With certain restrictions on the password the effect when different passwords with
K*)2s, s <[(n+5)/2]/2 correspond to different ciphertexts of the selected plaintext
with Kn can be achieved.

In 2005, such an algorithm in the case of the finite field F127 was implemented for
the GIS protection. Since then, the properties of encryption algorithms using
D(n, K) graphs (execution speed, mixing properties, degree and density of the
polynomial encryption transform) have been thoroughly investigated.

The complexity of linearization attacks was evaluated and modifications of these
algorithms with the resistance to linearization attacks were found. It turned out that
together with D(n, K) graphs, other algebraic graphs with similar properties, such
as A(n, K) graphs, can be effectively used.

The article considers several solutions to the problem of protecting the geological
information system from possible cyberattacks using stream ciphers based on
graphs. They have significant advantages compared to the implemented earlier
systems.
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1. Introduction

Graph Based Cryptography (GBC) area is moving with great speed into the main
stream of computer design, Information sciences, Information and Computer
programming, Artificial Intelligence and design, Artificial Intelligent and various
field of research. Application of GBC is in diverse area such as Data structures,
Communication networks and their security. A Graph-based approach centres on
conserving the environment of security events by breaking down factors of
observable data into a graph representation of all cyber vestiges, from all data
aqueducts, counting for all once and present data. For secret communication, Ciphers
can be converted into graphs. The Application of Graph Theory plays a vital role in
various field of Engineering and Sciences. GBC is used for the key exchange,
development of Multivariate Public Keys, key dependent message authentication
codes and algorithms of Noncommutative Cryptography (see [30]-[47]).

Especially Graph theory is commonly used as a tool of symmetric encryption.
First cryptographical applications of Graph Theory appeared in the areas of
Symmetric Cryptography and Network Security. This paper reflects some results in
the area of applications of families of algebraic graphs of large girth of Extremal
Graph Theory to the development of fast and secure encryption tools to process Big
Data files. The vertices and edges of algebraic graphs form algebraic varieties
defined over the field. The girth is the length of the minimal cycle in the graph. This
parameter defines the size of the key space of corresponding cipher. The girth of
several known families of algebraic graphs of large girth is not computed. It just
evaluated via the lower bounds.

Observed and presented new ciphers have a multivariate nature. The space of
plaintexts is an affine variety K" defined over finite commutative ring K. Bijective
encryption map F can be given by nonlinear multivariate polynomials fi, fo,..., fn
from the multivariate commutative ring K[x1, X, ..., Xn]. It acts on the affine space
accordingly the rule (X1, X, ..., xn)—(f1(X1, X, ..., Xn), f2(X1, X2, ..., Xn), ..., fa(X1, X2, ..., xn)),
where f; are given via corresponding list of monomial terms. Trapdoor accelerator
(see [27]) is a piece of information A such that the knowledge of A allows to compute
the reimage of F in time O(n?).

In presented ciphers correspondents Alice and Bob shares file A (the password)
and encrypt according to the robust procedure in time O(n) or O(n?). The adversary
does not have a password he/she can intercept large amount of pairs
plaintext/corresponding ciphertext and try to approximate maps F* and F. So degree
of F is an important parameter for the cryptanalytical studies. The most important
(active) part of password are is the information about the walk in the algebraic graph.

Section 2 is dedicated to discussion of the applications of algebraic graphs to
protection of Geological Information Systems. We discuss the known successful
example [2] of such application in 2005. It was based on idea of usage walks on
regular graphs approximating infinite 127-regular. In fact the first description of
selected graph based stream cipher based on approximations of g-regular tree where
g is a prime power was presented at the beginning of 2001. During last twenty years
many new results on the construction of new encryption tools and there cryptanalysis
were obtained. They lead to understanding of multivariate nature of these algorithms
and necessity of usage of infinite algebraic graphs defined over infinite commutative
rings of kind Fq [X1, X2, ..., xn] Or more general K[xs, Xz,..., xn] where K is a finite
commutative ring. Implemented in [2] encryption map is a polynomial map of
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degree 3 such that their inverse is also cubical transformation. So, adversary can use
linearisation attacks and after the interception of O(n®) pairs of kind
plaintexts/corresponding ciphertext he/she can approximate the encryption map in
time O(n'%). So, Section 2 is dedicated to observation of ciphers based on algebraic
graphs and resistant to such linearisation attacks.

The general scheme of flexible encryption algorithm based on special family of
algebraic graphs defined over commutative ring is presented there. The theory of
approximations of regular trees is presented in Section 3 which contains description
of g-regular forest approximation D(n, ¢), n—oo and tree approximations CD(n, q)
and A, q), n=2,3,... Analogues of these families of graphs over an arbitrary
commutative ring are presented there together with the known results on their
properties and applications.

Precise description of observed graph based algorithm is given in the Section 4
together with evaluation of the degrees of encryption map and its inverse.

The special case of A(n, 256) defined over the finite field Fass is selected for an
implementation. Parameters of corresponding computer simulations are given at the
end of Section 4.

Last Section 5 is the conclusion.

2. On GIS and approximations of infinite regular trees

Security aspects of using geospatial data and Geographical Information Systems
(GIS) are vital topics for current research. A number of publications on applications
of GIS to Cybersecurity, National security, and Intelligence operations are rapidly
growing (see [1], [2], [3]). Currently, GIS is an essential instrument of Decision
Making. Despite these facts, questions on the security of GIS are relatively
unexplored topics. Grows in the community of GIS users and the area of GIS
applications search for new security solutions, a critical research direction. One of
the first surveys [1], [2] with analyses of the quality and efficiency of such solutions
published in 2005. The authors suggested using N-Tier GIS architecture.

This paper observes the application of the primary database security categories for
managing spatial data. These categories are analyzed from the point of view of
application within GIS in the Global Information Space. A File System within a
Database (FSDB) with traditional and new encryption algorithms has been proposed
as a new GIS Security solution. An FSDB provides more safe and secure storage for
spatial files and supports centralized authentication and access control mechanism
in legacy DBMS. Cryptography solutions, as a topic of central importance to many
aspects of network security, are observed in detail.

The paper describes several traditional and new symmetric, fast and nonlinear
encryption algorithms’ implementation with fixed and adjustable key sizes, which
uses methods of graph-based cryptography. This article is well cited during 2005-
2018 (see proceedings of conferences on Geographical Information Systems Theory,
Applications and Management — GISTAM). Several authors agree on the
effectiveness of N-Tier architecture [2] and suggested methods of its usage. They
implemented one case from the family of graph based stream ciphers defined in [4].
It is the case of finite field F 127.

This is a family of graph based ciphers based on the well-known algebraic graphs
D(n, q) of Extremal Graph Theory (see [5], [6]) defined over the finite field F, where
g is a prime power. The space of plaintexts is a vector space (Fg). Used in [1], [2]
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case of q =127 demonstrated that corresponding DBMS is capable enough to
provide sufficient security to spatial files. This encryption procedure can provide
additional security to confidential and sensitive GIS information. Oracle Advanced
Security of the Oracle DBMS supports industry-standard encryption algorithms,
including RSA’s RC4, DES and 3DES and can be used for spatial data encryption
with graph based algorithms.

Custom external encryption algorithms can be integrated into that security schema
as well. The data encryption can significantly degrade system performance and
application  response time. For performance testing, the Oracle
DBMS_OBFUSCATION.TOOLKIT was investigated [2]. Different key length
gives different time results, e.g. difference in time between 16 and 24-byte keys is
about 10-20%, but the time difference between 24 and 32-byte keys is only about
5%. It means that the new graph based stream cipher for GIS has to be compared
well with ciphers DES, 3DES, stream ciphers RC4. Particular approaches were
developed to encrypt large files in Oracle DBMS for the GIS objects.

The procedure splits the data into smaller binary chunks to encrypt large data
objects, then encrypts and appends them back to the large data object (LDO). Once
the encrypted spatial data files have been allocated into LDO segments, they can be
decrypted by chunks and written back to LDO. Additional LOB objects, once
encrypted, should always be kept for the read-only spatial data files. It will save time
for the encryption procedure during log-off. The decrypted spatial data files will be
replaced by read-only encrypted spatial data files in the permanent primary storage
during log-off. The implanted cipher gives a more robust binary and text file
encryption algorithm than DES, 3DES.

We have to report that the implemented case of D(n, q) based encryption E(n, q)
is far from being optimal. As it was showed in [7] the increase of parameter ¢ leads
to faster encryption of files of the same size. Noteworthy that the usage of loaded
multiplication tables makes immaterial the difference between case of prime g and
composed prime powers. Such tables allow to use q=128 corresponding to the
alphabet ASCEE with the essential speed increase comparably to implemented in
[1], [2] g=127, where operator of taking modulo 127 is used cn times where constant
¢ depends on the length of the password. The multivariate nature of D(n, q)
encryption was noticed in [7] (see also [28] for the case of arbitrary ring K), described
their symbolic computations turned out to be cubic.

This fact was mathematically proved in [8] for arbitrary parameters n and g. The
standard usage of multivariate transformation E(n, q) with two affine transformation
T, and T, in the form T1 E(n, g)T. allow us to improve drastically the mixing
properties of the cipher. Noteworthy that in the implemented case of E(n, 127)
encryption the change of single characters of the plaintext leads to the change of
48-52 percents of characters of corresponding ciphertexts. The experiment with
special linear transformations T, and T, was described in [9, Ustim Kotorowicz]. To
preserve linear time O(n) of the encryption we have to select sparce transformations,
i. e. those with O(n) nonzero entries of corresponding matrices. Special sparce
transformations allow us to improve drastically mixing properties of E(n, q)
encryption. For selected in [9, Ust Kotorow] cases the single change of a plaintext
character leads to the change of more than 98 percents of characters of
corresponding ciphertext. As it was shown in [ust linguistic] transformation E(n, q)
with the password of length less than [(n+5)] has no fixed points. This property
holds for the case of ciphers of kind T1 E(n, q)(T1)™.
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More general graphs D(n, K) defined over arbitrary commutative ring K can be
obtained via simple change of F; for K (see [10]). Investigation of dynamical
systems corresponding to these graphs showed the similarity of general graphs
D(n, K) of the graphs defined for the case of fields (see [11], [12] and [13]). If
passwords corresponds to tuples of characters from the multiplicative group K* of
the ring K then different passwords of length < [(n+5)/2] produce distinct ciphertext
from the selected plaintext. It means that case of arithmetic rings Zn of integers of
modulo m is attractive for the implementations.

Noteworthy that the cases of fields Fgq, q = 2™ of characteristic two and rings
Z4, q=2" are most convenient for implementations because of files in the computer
are presented in the form 0, 1-sequences.

Recall that the girth of a graph is the length of its minimal cycle. The connected
components CD(n, g), n=2, 3,... of algebraic graphs D(n, q), g>1 form a family of
tree approximations, i. e well defined projective limit of them is an infinite g-regular
tree. Graphs D(n, q) are edge transitive. So, their connected components are
isomorphic. The system of quadratic equations which defines CD(n,q) were
presented in [14]. The union of these equations gives an algebraic description of
g-regular tree. Existence of such description is very important for Computer Science
because a g-regular tree is the deterministic part of branching process.

Noteworthy that the plaintext and the ciphertext of E(n, q) encryption are located
in the same connected component of D(n, q). Graphs CD(n, q) have a natural
analogue CD(n, K) defined over arbitrary commutative ring K with at least two
elements, CD(n, K) is an induced subgraph of D(n, K) (see [10]). The description of
CD(n, K) in terms of the system of recurrent quadratic equations is given in [10]
together with the description of CD(n, K) based encryption CE(n, K).

It works with the space of plaintexts K™, m=3/4n +c where ¢, c<3 is some
nonnegative integer constant. It is important that group of transformations of
CE(n,K) corresponding to various passwords acts transitively on the space of
plaintexts while the group generated by various transformations of kind E(n, K) is
intransitive. It leads to better mixing pro"perties of CE(n, K) in comparison with
those of E(n, K). In fact we have to use T:CE(n, K)(T1)™* where Ty is a special sparce
transformation of AGLn(K).

Another g-regular tree approximation A(n, q), q=2,3, ...were defined in [15]. It
has some advantages in comparison with graphs CD(n, ). For instance the graphs
are defined by simple homogeneous equation with two linear and one quadratic
monomial terms. Finite field Fy can be substituted by general commutative ring K
and graphs A(n, K) can be obtained this way (see [15] or Extremal [13]). The girth
g(A(n, q)) of the graphs A(n, g)=A(n, Fy) can be bounded from below via inequality
g(A(m, q))=[(n+2)/2] [16]. The computer simulation support the conjecture that
A(n, Zn) based encryption with passwords from ((Zm)*) {, m>2, t is an even
parameter <[(n+2)/4 is such that different passwords produce distinct ciphertext
from the selected plaintext. We will use notation AE(n, K) for the A(n, K) based
ciphers.

To summarise written above we discuss some properties of three graph based
steam ciphers E(n, K), CE(n, K) and AE(n, K) defined in the case K=F,, g>m and
K=Zmn, m>2. All of them can be used for GIS protection with described above N-tier
architecture. For practical implementation case of large finite fields and arithmetic
rings Zi, t=2" is preferable.
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The families of graphs D(n, K), A(n, K) defined over arbitrary commutative ring
K are bipartite graphs of type (1, 1, n-1) with partition sets which are two copies
of K" (see [17] or [11]), i.e. graphs with the incidence I=1(K)="I(K) between
points (X1, X2, ..., xn) and lines [y, Y2, ..., yn] given by the system of equations azx.-
boya= fa(X1, Y1), @3Xs-Dsys= f2(X1, X2, Y1, Y2, ..., @nXn-bnyn= fa(X1, Xz .., Xn1, Y1, ¥z ..., Yn-1)
where parameters ay, as ,.., an1 and by, bs .. bna are taken from the multiplicative
group K* of the commutative ring K. Parameters p((Xi, Xz ..., xn))=X1 and
p(IY1, Y2, ..., yn])=Yy1 serve as colours of the point and the line. The following
linguistic property holds. Each vertex of the graph has a unique neighbour of the
chosen colour.

Graph CD(n,K) after the elimination of computed recurrently parameters also can
be written as linguistic graphs of type (1, 1, m-1) where m=[3/4n]+c.

In fact the architecture require a partition of information into blocks of the same
size. So, parameters n and m equals to some selected constant. the length of the
password is another even constant which has an impact on the speed of encryption.
Other option to increase speed of execution is the increase the cardinality of the
ground field or ring. Let us consider the general scheme of creating the cipher based
on the family of linguistic graphs "I(K), n=2, 3, ...

Noteworthy that we can expand defined above I(K) to the infinite linguistic graph
I(K[X1, X, ..., xn]) defined over the ring K[Xx1, X2, ..., xn] Of all multivariate polynomials
with coefficients from K and the variables x;, i=1,2,..., n. So points and lines of this
graph are X=(X1(X1, X2, ..., Xn), X2(X1, X2, ..., Xn),..., Xn(X1, Xz, ..., xn) @nd Y=[Y1(Xa,
X2, ...y Xn), Y2(X1, X2,..., Xn), ..., Yn(X1, X2, ..., Xn)]. The incidence of this bipartite graph
is given by equations a2X2—b2Y2 = fz(Xl, Y1), 33X3-b3Y3: fz(xl, Xz, Yl, Yz), . aan—bnYn:
fa(X1, X2 ..., Xn1, Y1, Y2 .., Yn1), Where parameters ay, as ,..., an-1, b2, b3 ... bna and
polynomials fi, i=2, 3,..., n with coefficients from K are taken from the equations in
the definition of the linguistic graph 1(K).

We define the polynomial map F from K" to K" via the following scheme (see
[29]). Take the special point X=(Xu, Xz, ..., xn) Of I(K[X1, X2, ...xn]) and consider the list
of colours gi(x1), g2(X1), ..., gi(X1). We compute the path volvilv,...Ivi where vo=X and
vi+1 IS the neighbour of v; with the colour gi(xy), i=1,2, ..., t and I=I(K[X1, X2, ..., xn]).
Then the destination point v; of this path can be written as (g«(X1), Fa(X1, X2), ..., Fn(X1,
X2, ..., Xn)). The map F is given by the rule x;—gi(X1), Xo—=F(x1, X2), ..., Xo—F(x1, X2, ...,
Xn). It is easy to see that F=F(g1, g»..., gi) is a bijective map if and only if the
equations of kind gi«(x:)=b have unique solutions for unknown x; for each b from K.

So family of linguistic graphs "I(K), n=2, 3,... together with family of affine
transformations TheAGLn(K) can be used as a cipher with the space of plaintexts K"
and the password g1(X), g2(x), ..., g«(x) and the encryption map Tn(F(g1, Gz, ..., g)(Tn)™

Correspondents Alice and Bob share the password given by gi, 9a,..., gt and the
sequence of transformations Tn, n=2, 3,... We assume that inverse maps (Tn)* are
computed and presented explicitly. For the encryption of potentially infinite plaintext
(P)=(P1, P2 ..., pn) they will use transformation TaF(g1, G2,..., £)(Tn)™. One of them
creates the plaintext (p) and computes the ciphertext To(F(Q1, Gz...., 2)(Tn) (p)=CcC
recurrently. The procedure is the sequence of the following steps.

S1. He/she computes (Tn)2(p1, P2. ..., pn) =(r(1), ¥(2), ..., ¥(n))=(r).

So. He/she computes  a(1)=gi(r1), a(2)=g2(r), ..., a(t)=g(r.).
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Sa. Let Na(X1, X2,..., xn) be the operator of taking the neighbour of point (X1, Xz, ..., xn)
with the colour a in the linguistic graph "I(K) and ®N(y1, Y2,..., yn) be an operator of
taking the neighbour of line [yi, y>,..., ya] with the colour a. He/she executes the
following operation. Computation of vi=Nau)(r), Vo= *®N(v1), Va=Na)(V2),
Va=2ON(v3), ..., Vea= Na1)(Ve2), Vim*ON(Vea) =U=(us, Uz ..., un).

S4. He/she computes ciphertext as T(u)=c.
DECRYPTION PROCEDURE.

Assume that one of correspondents received the ciphertext c. He/she decrypts via the
following steps.

D;. Computation of u as (Tn)(c)=u and getting the solution x=r(1) of equation
g(x)=u.

D,. Computation of parameters a(1)=g1(r(1)), a(2)=g2(r(1)), ...,a(t-1)=gw1(r(1)) and
the completion of the recurrent procedure Vei=Naw1(U), Vio= *2N(ve),
Vi:s=Nag-3)(Ve-2), Vea=2*IN(Vea), ..., Vi= Naay(Ve-2), "ON(Vaea)=r.

Ds. Computation of the plaintext (p) as T(r).
OBFUSCATION OF THE ALGORITHM.

Let us consider the colour jJump operator J. which transforms point (ps, p, ..., pn)
of the graph 1(K) to the point (a, pz, ps, ..., pn).

We can change the encryption map TaF(g1, G2,..., g0)(Tn)™ for the TaF (g1, Ga....,
91)Jg(Tn)", Where Jq is a colour jump operator acting on points of 1(K[X1, X, ...xn]
with the colour g(x1y)eK(x1) such that the equation of kind g(xi)=b has a unique
solution for each parameter b from K.

After this change assumption the bijection of g: on K is immaterial.

Encryption procedure requires computation of (Tn)™(p1, p2...., pn) =(r(1), (2), ...,
r(n))=(r), the computation of u accordingly step S,. the computation of Jy(z)=u"and
application of affine transformation T, to the tuple u".

For the decryption of ciphertext c the user has to compute u’=(u’y, u’s, ..., u’n) as
(Tn)™(c), solve for x the equation g(x)=u "1, use the solution x=r(1) of this equation
for the computation of a(1)=0i(r(1)), a(2)=gx(r(1)),..., a(t)=g«(r(l)), compute
Ja(t)(u’)=(u)=(uy, Uy, ..., un) in the graph 1(K) and execute procedures Dz and D4 to
get the original plaintext.

3. On families of algebraic graphs of large girth

3.1. General remarks

Girth and diameter of a graph are the minimal length of its cycle and the maximal
distance of the graph. We can consider girth indicator Cind(v) of vertex v of the graph

I" as the minimal length the cycle through v and introduce cycle indicator Cind(T) of
the graph as the maximal value of Cind(v) for its vertices.
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The constructions of finite or infinite graphs with prescribed girth and diameter is
an important and difficult task of the Graph Theory. Noteworthy that the incidence of
classical projective geometry over various fields is a graph of girth 6 and diameter 3.
J. Tits defined generalised m-gons as bipartite graphs of girth 2m and diameter m.
Feit and Higman proved that finite generalised m-gons with bi-degrees > 2 exist only
in the cases of m=3, 4, 6, 8 and 12. Geometries of finite simple groups of rank 2 are
natural examples of generalised m-gons for m=3,4,6, 8. Classification of flag
transitive generalised m-gons of Moufang type were obtained by J. Tits and
R. Weiss.

Infinite families of graphs of large girth of bounded degree are important objects
of Extremal Graph Theory which were introduced by P. Erd6s’. He proved the
existence of such families via his well-known probabilistic method. Nowadays few
explicit constructions of such families are known. The concept of infinite family of
small world graphs of bounded degree turns out to be very important for various
applications of graph theory.

Noteworthy that only one family of small world graphs of large girth is known.
This is the family X(p, q) of Ramanujan graphs introduced by Gregory Margulis [18]
and investigated via the computation of their girth, diameter and the second largest
eigenvalue by A. Lubotsky, R. Phillips and P. Sarnak [19].

We have to admit that studies of families of graphs 75 with well defined projective
limit I, which is isomorphic to infinite tree, is well motivated.

We refer to such family as tree approximation. There is only one approximation
by finite graphs which is a family of large girth. This is the mentioned above family
of CD(n, q) defined by F. Lazebnik, V. Ustimenko and A. Woldar. The question
whether or not CD(n, q) form a family of small world graphs has been still open
since 1995.

In 2013 the tree approximation by finite graphs A(n,q) which is a family of small
world graphs was presented (see [15]). It was proven that the graph from the family
has maximal known cycle indicator (in fact Cind (A(n, q))>2n+2).

One of the main statements of this paper is A(n, g) where n=2, 3,... is a family of
large girth.

We generalise these results in terms of the theory of algebraic graphs defined over
arbitrary field and consider properties and applications of above mentioned graphs.

3.2. On graphs A(n, q), their properties and generalisations

All graphs we consider are simple, i. e. undirected without loops and multiple edges.
Let V(I") and E(I") denote the set of vertices and the set of edges of I, respectively.
The parameter |V(I")| is called the order of I, and |[E(G)| is called the size of I". A path
in " is called simple if all its vertices are distinct. When its convenient we shall
identify 7"with the corresponding antireflexive binary relation on V(T"), i.e. E(T") is
a subset of V(I") xV(I"). The length of a path is a number of its edges. The girth of a
graph I, denoted by g=g(T"), is the length of the shortest cycle in I'. Let >3 and g>3
be integers. The distance between vertices v and u of the graph " is a minimal length
of the path between them. The diameter of the graph is maximal distance between
its vertices.

Graph is connected if its diameter is finite. Graph is k-regular if each vertex of the
graph is incident exactly to k other vertexes. A tree is a connected graph which does
not contain cycles.
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(1) An infinite family of simple regular graphs I of constant degree k and order
vi such that diam (T;) < c logk-1(vi), where ¢ is the independent of i constant and diam
(T7) is diameter of 17, is called a family of small world graphs.

(2) Recall that infinite families of simple regular graphs I of constant degree k
and order v; such that g(7i) > ¢ logk-1(vi),where c is the independent of i constant and
g(Ti) is a girth of 75 are called families of graphs of large girth.

Let I" be a simple graph. Assume that Cind(x) is the minimal length of cycle
through vertex x of the graph I". Let Cind(G) stand for the maximal value of Cind(x)
via all vertices x of 7. We refer to parameter Cind(G) as a cycle indicator of 7.

One of the main purposes of the paper is to present a special interpretations of
g-regular tree (g-regular simple graph without cycles) in terms of algebraic geometry
over finite field F,.

Theorem 1 [16]. For each prime power g, q >2 there is a family of g-regular
graphs 77 satisfying following properties
(i)  Iiis afamily of small world graphs,

(i)  Iiisafamily of large girth,
(iii)  Projective limit of graphs 73 is well defined and coincides with g-regulat tree T,
(iv) Cind Ii>2 logq(vi/2)+2.

We refer to family of graphs 7; satisfying condition (iii) as tree approximation.
The prove of Theorem 1 is given via explicit construction of graphs I =A(i,q), i >2
satisfying requirements of the statement. Noteworthy that A(i,q) is a unique known
example of the family satisfying conditions (i), (ii) an (iii).

In fact, there is exactly one other known construction of the g-regular family
satisfying (i) and (ii), i.e. explicit construction of the family of regular simple small
world graphs of large girth and with an arbitrarily large degree g.

This family X(p, q) formed Cayley graphs for PSL»(p), where p and g are primes,
had been defined by G. Margulis [18] and investigated by A. Lubotzky, Sarnak and
Phillips [19]. As it is easy to see the projective limit of X(p, ) does not exist.

The construction of A(n, ).

Let K be a finite field Fq. We define A(n, K)=A(n,q) as bipartite graph with the
point set P=K" and line set L=K" (two copies of a Cartesian power of K are used).
We will use brackets and parenthesis to distinguish tuples from P and L.

So (p)=(p1, P2, ... , pn) € Prnand [1]=[l4, I2, ..., [n] € Ln.

The incidence relation 1=A(n,K) (or corresponding bipartite graph I) is given by
condition p I l'if and only if the equations of the following kind hold.
p2 - |2=|1p1,

Pz - ls=p1ly,
Pa - la = l1ps,
Ps - I3 = p1 lag,

Pn - In = p1 | for odd n and pn - I = I1 paa for even n.

We can consider an infinite bipartite graph A(K) with points
(p1, p2,..., pn,...)and lines [li, l2,....0n, ...].
Proposition 1 [16]. If K=F4 g>2 then A(n, Fg) is a family of small world graphs and
tree approximation with Cind(A(n, Fq))>2n+2.

Let K be an arbitrary field. We define A(n, K) via simple change of F, on K and
announce the following statement.
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Proposition 2 [16]. Let K be a field. Then the girth of A(n,K) is > 2[n/2]+2.
Symbol [x] stands for the flow function from x. Theorem 1 follows from
propositions 1 and 2.

3.3. On homogeneous algebraic graphs of large girth

Let F be a field. Recall that a projective space over F is a set of elements constructed
from a vector space over F such that a distinct element of the projective space
consists of all non-zero vectors which are equal up to a multiplication by a non-zero
scalar. Its subset is called a quasiprojective variety if it is the set of all solutions of
some system of homogeneous polynomial equations and inequalities.

An algebraic graph ¢ over F consists of two things: the vertex set Q being a
quasiprojective variety over F of nonzero dimension and the edge set being a
quasiprojective variety ¢ in Q x Q such that (X, x) is not element of ¢ for each
X € Q and xpy implies ypx (xpy means (X, y) € ¢). The graph ¢ is homogeneous (or
M-homogeneous) if for each vertex v € Q the set {x | vpx} is isomorphic to some
quasiprojective variety M over F of nonzero dimension. We further assume that M
contains at least 3 elements.

Theorem 2 [20]. Let I" be homogeneous algebraic graph over a field F of girth g
such that the dimension of neighborhood for each vertex is N, N > 1. Then
[(g — 1)/2] <dim(V)/N.

The following corollary is an analog of Even Circuit Theorem by Erdés’ for finite
simple graphs.

Corollary 1. Let I be a homogeneous graph over a field F and E(T') be a variety
of its edges. Then dim(E(I)) < dimV(I)(I1 + [(g — 1)/2]™.

We refer to a family of homogeneous algebraic graphs ¢, for which dimension of
neighborhood for each vertex is independent constant N, N >/ as a family of small
world graphs if diameter of each graph ¢, is bounded from above by linear function
on +f defined by constants « and f.

We refer to a family of homogeneous algebraic graphs ¢, for which the dimension
of neighborhood for each vertex is independent constant N, N > 7 as a family of large
girth if girth of each graph ¢, is bounded from below by linear function an+p defined
by constants a and .

We refer to a homogeneous algebraic graph as algebraic forest if it does not
contain cycles. Their term algebraic tree stands for the connected algebraic forest.

We say that family of homogeneous algebraic graphs ¢, is a forest (tree)
approximation if projective limit of ¢, is an algebraic forest (tree) and formulate
thaw following statement.

Theorem 3 [16]. For each field F, F+ F> there exists a tree approximation which
is a family ¢, of small world algebraic graphs of large girth with the vertex set of
dimension n and cycle indicator > 2n+2.

Family of graphs ¢.=A(n, F) provides explicit construction of objects described in
the theorem. As it follows from Theorem 2 homogeneous algebraic graphs A(n, F)
form a family with maximal possible girth indicator.

Remark 1. Graphs A(n, ) are disconnected. So they are disjoint union of cycles.
Graph A(Fz) is 2-regular forests with trees presented on the following diagram

---------- *-----*._- ... Girth indicator of A(n, F,) coincides with its girth of
size>2n+2. So, formally A(n 2) are algebraic graphs of large girth. Noteworthy that
cycles can be defined via the system of equations.
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3.4. Graphs A(n,K) as homomorphic images of D(n,K)

Graphs A(n,q) obtained as homomorphic images of graphs D(n,q) which defines
projective limit D(q) with points

(P)=(po1, P11, P12 » P21, P22, P'22, ..., P iy Pii+1, Picti » Pritli+l ... ),

lines

[|]=[ |1o, |11, |12 , |21, |22, |'22 Y eeey Z’ii, |ii+1, |i+1,i , |+i+1,i +1 ... ] and incidence
relation given by equations

li-pii=l1o Pi-vi ;

Ui — p’ii = lijia Pos;

lijs1 — Pii+1 =i Po1;

listi - Pissi = lopii -

This four relations are defined for i>1, (p '11= p11, '11= l11).

Remark 2. You can see that indexes of vectors correspond to coordinates of
positive roots of root system A; with a wave.

Historically graph D(q) is not the first example of description of g-regular forest
in terms of Algebraic Geometry. Geometries of buildings (see [21] and further
references) corresponding to extended Dynkin diagram A; as incidence structures are
g+1-regular trees or g+1-regular forests. As a result we get a description of a tree in
group theoretical terms.

In [22] it was noticed that the restriction of this incidence relation on orbits of
Borel subgroup B acting on maximal parabolics are g-regular bipartite graphs. So
we get a description of a g-regular tree in terms of positive roots of A; with a wave.

In [5] authors proved that D(n,q) defined via first n-lequations of D(g) form a
family of graphs of large girth. The general point and line of these graphs are
projections of (p) and [I] onto the tuples of their first n coordinates.

Unexpectedly it was discovered that these graphs are disconnected if n > 6. So
forest D(q) contains infinitely many trees and the diameter is an infinity. F. Lazebnik
conjectured that connected components of graphs D(n,q), n =3,4, ... form a family
of small world graphs. This conjecture is still open.

In 1994 it was found out how to describe connected components CD(n, q) of
graphs D(n, q) in terms of equations (see [14], [6]).

Graphs A(n, q) were obtained in 2007 as homomorphic images of graphs D(n, )
([11]). Corresponding homomorphism 7 is a procedure to delete coordinates of
points and lines with indexes (i+1, i) and (i,i)".

The self importance of these graphs have been justified in joint research with
U. Romanczuk (see [13] and further references) and M. Polak [23] via applications
to Cryptography and Coding Theory.

In the case of families of graphs of large girth we would like to have "speed of
growth" ¢ of the girth "as large as it is possible”.

P. Erdos' proved the existence of such a family with arbitrary large but bounded
degree k with c=1/4 by his probabilistic method.

In the case of families X(p,q) and CD(n,q) the constant c is 4/3. In the case of
A(n,q) we just get inequality 7<c¢<2. So exact computation of the girth is the area
of the future research.

There are essential differences between family of graphs X(p, q) and tree
approximations. Recall that the projective limit of X(p, g) does not exist.
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It was proved that bipartite graphs A(n,q) are not edge-transitive and not vertex
transitive (transitivity on points and intransitivity on lines). Noteworthy that their
projective limit T (the tree) is obviously an edge-transitive infinite graph.

The usage of generalizations and modifications of graphs A(n,q) allows us to
construct postquantum cryptosystem of ElI Gamal type with encryption procedure for
potentially infinite vector from Fq with the execution speed O(n**?") (see [24]).

In fact the diameter of A(n,q) is growing slower than diameter of X(p,q). So, A(n,q)
are the best known small world graphs among known families of large girth. Recall
the girth of A(n,q) is not yet computed precisely.

So, the comparison of growth of the girth for A(n,q) and X(p,q) is the interesting
task for the future research.

In the case of finite fields both families are expanding graphs, the second largest
eigenvalue of A(n, q) tends to 292, they are not Ramanujan graphs for which the
second largest eigenvalue has to be bounded above by 2(g-1)”.

The family X(p,q) is formed by Ramanujan graphs, so they are better expanding
graphs than A(n, K).

Families X(p,q), CD(n,q) and A(n,q) can be used for the constructions of LDPC
codes for noise protection in satellite communications. D. MacKay and M. Postol
[25] proved that CD(n, q) based LDPC codes have better properties than those from
X(p,q) for the constructions of LDPC codes.

Together with Monika Polak we proved that A(n,q) based LDPC codes even better
than those from CD(n,q) (see [23]).

Cayley nature of X(p,q) does not allow to use these graphs in multivariate
cryptography. Various applications of graphs D(n,q), CD(n,q) and A(n,q) have been
known since 1998.

The most recent postquantum cryptosystem based on noncommutative
multivariate group associated with A(n,q) is described in [24], IACR e-print Archive
2021/1466.

3.5. On the equations for graphs CD(n, K)

Let K stand for an arbitrary commutative ring. Noteworthy that graphs A(n, K) and
D(n, K) are defined over arbitrary commutative ring K have been already presented.

To facilitate notation in the future results on ”’connectivity invariants” of D(n, K),
it will be convenient for us to define p.1o = lo-1 = p1o = lox = 0, poo = loo = -1,
ploo = loo = -1, p11 = pl11, i = 1’11 and to assume that our equations are
defined for i > 0.

Graphs CD(k,K) with k£ > 6 were introduced in [11] for as induced subgraphs of
D(k,K) with vertices u satisfying special equations a,(u)=0, as(u)=0,..., a(u)=0,
t=[(k+2)/4], where u = (Ug, U11, U12, U1, ..., Urr, U rr, Uttt U1, Urstr,...), 2 < <t,
a€f(1,0), (0,1)}is a vertex of D(k, K) and a; = ar(u)=Zi=o,r(Uii U' r-, r-i-U iji+1 U r-i,ri-1)
for every r from the interval [2,t] for every r from the interval [2,t].

We set a=a(u)=(ay, as, ..., a) and assume that D(k, K)=CD(kK) if k=2,3,4,5.

As it was proven in [11] graphs D(n, K) are edge transitive. So their connected
components are isomorphic graphs. Let YCD(k,K) be a solution set of system of
equations a(u)=(V2,vs, ...,v)=V for certain v ¢X**. It is proven that each YCD(k,K) is
the disjoint union of some connected components of graph D(n,K).
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It is easy to see that sets of vertices of YCD(k,K), v ¢K'* form a partitions of the
vertex set of D(n,K).

The concept of quasiprojective variety over commutative ring K can be introduced
via simple substitution of K instead of field F. It leads to concepts of homogeneous
algebraic graphs over K, forest and tree approximations and families of graphs of
large girth over K. It was proven that for the case of commutative ring K with unity
of odd characteristic graphs CD(n,K) are connected (see [26]). So graph
CD(n,q)=CD(n, Fg) for odd q is a connected component of D(n,q).

As it follows from definitions the image of restriction of homomorphism 7 from
D(n, K) onto CD(n, K) coincides with A(n, K).

So graphs A(n,K) are connected for the case of K with unity of an odd
characteristic.

Theorem 4 [16]. For each commutative integrity ring K the families of graphs
CD(n, K), n=2,3,... and A(n, K),n=2,3,.. are forest approximations and families of
graphs of large girth.

4. On the description of selected algorithms based on algebraic graphs of large
girth

To achieve linear speed O(n) of the encryption described in Section 1 functions
gi, i=1,2,..,t are selected in the form Xi+c(i), c¢(i)eK and the parameter t will be
selected within the interval [2, [(n+5)/2]) when I1(K)=D(n, K) or I(K)=CD(n, K) and
interval [2, [n/2]+1) in the case when I(K)=A(n, K).

Additionally we take parameters b(1), b(2), ...,b(k) , a(l), a(2),...,a(K), k=t/2 from
K* to construct c(i) recurrently via the following rules c(1)=b(1), c(2)=a(l),
c(i)=c(i-2)+b(i) if i, >3 is odd n and c(i)=c(i-2)=a(i) if i, >4 is even. We refer to
the tuple (b(1), b(2),..., b(k), a(l), a(2),...,a(k)) as active password and affine
transformation T as passive password.

Our choice insures that in the case of constant passive password the single change
of a single character of active password leads to a change of the ciphertext produced
from the selected plaintext.

We choose an affine transformation T in the form of linear map given by the
following rule

T(x1)=x1+m(1)Xo+... +m(n-1)Xn.1 Where m(i), i=1,2, ..., n-1 are elements of K*,
T(x)=xi for i=2,3,..., n. SO T (X1)=X1-M(1)X2-M(2)Xs-...-m(n-1)xn. T (x))=x; for
i=23,..., n.

Recall that explicit description of linguistic graphs D(n, K) and A(n,K) is given in
the previous section and general encryption algorithm is described in section 2. So,
ciphers T E(n,K) T*and TEA(n, K) T have full description.

In the case of graph CD(n, K) we will use in fact the induced subgraph "CD(n, K),
h=(h2, hs,..., &), t=[(n+2)/4] of D(n, K) of all points and lines u=(ug, U11, U1z, Uz, ...,
Urr, #rr, Utees Urr+1, Uresr, ...) Satisfying conditions ai(u)=h;.

Linguistic graph "CD(n, K) can be thought as bipartite graph with points

(P)=(po1, P11, P12, P21, -y, Piiet, Pitti  Pritti+l ... ), 1=2,3, ..., t-1
and lines

=1 ho, la, bz, log, Lo, oo, iy lissi ) leivsien oo/, i=2,3, .., -1 of length
n-t.
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Their incidence is given by the following system of equations

li-pii=l1o Pi-i ;
lii+1 — Pii+1 =lii Pot;
listi - pissi = hop'ii,

where p’ 2 is defined by the equation az(po1, P11, P12, P21, P22 p 22 )=h2 and can
be written as p 2> = a2(Po1, P11, P12, P21, P22, p 22)-hat+p 22 = ba(Po1, P11, P12, P21, P22),
other parameters are p 3= as(Poz, P11, P12, P21, P22, P 22, P2,3, P3,2, P33 p '33)-Ns +p a3
=bs(Por, P11, P12 P21, P22 P22, P23 P32, Pl33)..., p v=ai(Po1, P11, P12, P21, P22,
P'22,..., ptitt, Prit, Pret, Pre, ptt )= e +p 't =be(Pos, P11, P12, Pa1, P22, P22, .o,
Pttty Pen 6 Pret, Prt)-

The computation of symbolic expressions p’ii recurrently and their explicit
substitution in the system of equations give us the equations of the linguistic graph.

We assume that corresponding cipher has the space of plaintexts K™'. We use
active passwords (b(1), b(2),..., b(k), a(l), a(2),...,a(k)) an linear transformations T
of K™ constructed via described above rules. We assume that parameters hy, hs, ..., s
will be considered as part of active password and denote the cipher as
TCE(n, K)T'TaF(g1, 92, ..., g)Jg(Th)".

We will use presented in Section 2 obfuscation scheme for each cipher
TE(n, K)T* TAE(n, K)T*and TCE(n, K)T? in the case K=Fq, q>2. We use special
disturbance function g of Iy selected as x—x*+b where beFy, ecZs, d=q-1 and
(e, d)=1. So, the notations DE(n, K) =TE(n, K)IgTand DA(n,K)= TAE(n, K)I,T*
and DC(n,K)=TCE(n, K)IgT* will be used for these encryption schemes with the
disturbance.

Algorithms with the encryption maps TE(n, K)T™ and TAE(n, K)T* independently
on the choice of active and passive passwords have multivariate encryption and
decryption functions of degree 3. In [45] the linearisations attacks on these ciphers
with the interception of O(n®) pairs plaintext/cipheretext are presented. They can be
executed in polynomial time O(n™°).

The ciphers DE(n, K) and DA(n, K) use cubical encryption maps as well but the
usage of disturbance map D: x—x® lead to the increase of the degree r of inverse
maps. Parameter r can be evaluated from below by the polynomial degree of
transformation D™ acting on the elements of multiplicative group K*. So, if K=F,,
q=2% then the order of polynomial decryption map is at least 2*. It justifies that
direct linearisation attacks are not feasible.

Case TCE(n, K)T™ is principally different. As it follows the results of [46] the
encryption function corresponding to selected active password has degree
[(n+2)/4]+2. Recall that active password is formed by tuples (b(1), b(2),..., b(k),
a(l), a(2),...,a(k)) and (hy, hs, ..., i) where h_i are internal parameters of subgraph
"CD(n, K). If k is less than half of the girth then different active passwords produce
distinct ciphertexts.

High degree of the transformation insures that a generation of standard form for
the encryption function can not be done in polynomial time.

So the directed linearisation attacks are theoretically impossible. Principle
difference of DC(n, K) and TCE(n, K)T* is the fact that the usage of disturbance
implies the fact that the degree of inverse function is essentially higher than those
for encryption function.
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The implemented case

For the first implementation we select the case of encryption function of
DA(n,K)= TAE(n, K)I,T™ for finite field Fzss with g of kind g = x?+b. In this case
the degree of encryption map will be at least 128 (see [27]). The linearisation attacks
by adversary requires the interception O(n®) pairs of kind plaintext/ciphertext. After
that he/she need approximate the map of degree > 128 with the possibility to choose
the plaintext an get corresponding ciphertext. In practical case of n > 64 such
linearisation attacks are unfeasible.

CRYPTALL 4 software is written in C++ programming language and therefore it
is portable and runs in many platforms such as Unix/Window. Thecontext diagram
is depicted in Fig. 1. The interface is friendly. It allows users to enter active and
passive password of selected length. The program is supported by key exchange
protocol based on Eulerian transformations of (F 2ss). It allows the elaboration of
tuple of nonzero field elements of sufficient length to form both passwords.

User ] The encrypted file > User 2
\ The name of the The name of the
rord
Pa551< \ original file encrypted file
\ / The name of the
The name of the ord
passwor ]

encrypted file decrypted file

/

CRYPTALL
SYSTEM

Fig. 1. Context Diagram of CRYPTALL 4

Experimental Measurements. To evaluate the performance of our algorithm, we
use with different size of files. We denote by t (k, L) the time (in millisecond) that is
needed to encrypt or decrypt (because of symmetry). The file size is in kilobytes for
passwords of length L. Then the value of t(k, L) can be represented by the following
matrix (Fig. 2).

L\k | 3000 4000 5000 6000
4 1143 1535 1755 2120.75
8 2162.25 | 2999.75 | 3452.5 | 4150
12 | 3070.5 | 4108 5061.25 | 6053
16 | 4090.5 |5429.25 | 6673.5 | 7945.75
20 | 5131.75 | 6778.75 | 8303 9873.75
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Fig. 2. Run time for CRYPTALL 4 System

Computer experiment justifies that in implemented case the speed of execution of
decryption or encryption procedures are essentially higher than in the case of stream
cipher of [2] used for GIS protection. New algorithm has essentially better mixing
properties (see [47]).

5. Conclusion

The main theoretical result of the paper is explicit construction of the family of
multivariate map of affine maps F, with the trapdoor accelerator of linear degree cn,
c=3/4 acting on affine space K" defined over arbitrary commutative ring K with at
least 3 elements. Corresponding cipher has execution speed of kind % n*+O(n)
which is proportional to the length of active password of size 0(1). The decryption
procedure takes the same time with the encryption process. In the case of choice of
special linear conjugation T it has nice mixing properties: change of single character
of the plaintext or active password leads to the change of > 98% of characters of
corresponding ciphertext.

So F, based cipher can provide essentially better security than the cipher selected
in [2]. The disadvantage of F, is speed of encryption O(n?) but not O(n). So the usage
of F, will drastically improve the security level of GIS protection but essentially
slow down of speed of spatial information processing.

Noteworthy that speed of processing is very important parameter. That is why we
suggest usage of ciphers DE(n, K) and DA(n, K) for GIS protection which are more
robust in the comparison of cipher chosen in [2], they have essentially better mixing
properties and practically resistant against linearisation attacks. Ciphers DE(n, K)
and CE(n, K) can be chosen in the case of tasks where security aspects are more
important than the execution speed.
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B.O. Ycerumenko, O.C. ITycToBiT
PO BE3NEKY TIC-CUCTEM 3 N-PIBHEBOIO APXITEKTYPOIO TA
CIMEMCTBA AJITOPUTMIB IIIU®PYBAHHS, BUBHAYEHHUX 3A TPA®AMHU

AHoTauis. Bigkpurts onucy g-peryyisipHOro JiepeBa B TepMiHaX HECKIHUEHHOI CHCTEMH
KBaJIpaTHUX PIBHSHb HaJ CKIHYEHHMM TosieM FQ Maio BIUMB Ha po3BUTOK [HDOpMaTHKH,
30KpeMa Teopii KpunrorpadidHHMX alrOpUTMIB, IO BH3HAYAIOThCH 3a rpadamu. Lle
CTHMYJIIOBAJIO PO3BUTOK KOHCTPYKIIi OE€3MEYHMX IMOTOKOBMX AJITOPUTMIB HIM(pPYBaHHS.
BusiBuiniocs, mo Taki iHCTpyMeHTH mM(pyBaHHS MOKHA €(pEKTHBHO BHKOPHCTOBYBATH B
cucremax 3axucty ['IC, mo BxuBarote N-piBHeBy apxirtekTypy. Mu orisiHemMo Bimomi
ITOPUTMH MIN(PYBaHHsI, 3aCHOBaHI Ha alPOKCHMAlisAX peryIsipHUX AEpeB, ix Moandikamii,
BU3Ha4YeHI HaJl apu(METUUHIMH KUIBISIMH, Ta ITPOTrpaMHi peaizarii nux aaropurmis. Kpim
TOro, OyAyTh MpEICTaBICHI HOBI OiNbII Oe3MedHi aJrOpUTMH MMOTOKOBOTO HIM(pyBaHHS,
npunatHi g 3axucty T'IC.

ANropuT™Mu  OYAyIOTBCS 3 BUKOPDHUCTAHHSIM OJyKaHb Ha BEpIIMHAX JIBOJOJIBHUX
perymsipaux rpadis D(n,K), Bu3HAueHHMX 3a CKiHYCHHMM KOMYTATHBHUM KinbieM K 3
OIMHUIICI0 Ta HETPHUBIAIFHOIO MYJIBTHUILTIKATUBHOIO Tpymoro K*. Jlomi Takmx rpadis €
N-BUMipHIMH apiHHUMHU IIPOCTOpPaMH HaJ KiblieM K. birykaHHS mapHOi JOBXHHU BU3HAYAE
NIEPETBOPEHHS TIEPEXO0/Ty Bijl OYATKOBOI /10 OCTAHHBOI BEPIIUHHU 3 OJHI€T 3 monel rpady.
Orxe, adinauii npoctip KN MoXHa po3riisiaaTH SK MpOCTip BIAKPUTUX TEKCTIB, a OIyKaHHS
Ha rpadi naposem, KU BU3HAYa€ NepEeTBOPEHHS, 10 MIH(PPYE.

ITpu neBHUX OOMEKCHHSIX Ha TIAPOJIi JOCIATAETHCsI €EeKT, KON pi3HUM mapoiisim 3 (K*)2s,
s <[(n+5)/2]/2 BianoBinaroTk pizHi wHdporpamMmu 06paHOro BiAKPUTOro TeKeTy 3 Kn. Y 2005
POIIi TAKUH aJTOPUTM Yy BUMAJAKY CKIHYEHHOTO 1Mot F127 BUKOPUCTOBYBABCS IJISl 3aXUCTY
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I'IC. 3 uporo yacy BIaCTHBOCTI alropUTMiB IKH(pyBaHHs 3 BuKopuctanusaM rpadis D(n, K)
(WBUIKOISI, BIACTMBOCTI 3MIiHHM, CTEMiHb Ta T'yCTHHA IOJIHOMIalbHOTO IEPETBOPECHHS
mmdpyBaHHs) OyITH peTeNFHO MOCTiKeHi. byio oIiHeHO CKIagHIiCTh aTak JIiHeapu3alii Ta
3HaleHo Moau(iKaIlil IUX aITOPUTMIB i3 CTIMKICTIO 10 aTak JiHeapu3anii. BusBumocs, mo
pasom 3 rpadpamu D(n, K) MoxHa eeKTHBHO BUKOPHUCTOBYBATH ¥ iHII anreOpaidsi rpadu 3
MOMIOHNMH BIaCTUBOCTAMH, Taki sk rpadu A(n,K).

VY cTaTTi pO3rIAOAa0ThCS KijbKa O3B’ A3aHb 3aaui 3aXUCTY Te0JIoTiuHOi iHpopMamiiHOl
CHCTEMH BiJI MOKJIMBHX KibepaTak 3a JOIIOMOTOIO IIOTOKOBHX aJITOPUTMIB, IO CIIHPAIOTHCS
Ha Tpadpu. BoHM MalOTh iCTOTHI mepeBarn B MOPIBHSHHI 3 peali30BaHUMH paHille
AITOPUTMaMH.
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