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ON SECURITY OF GIS  SYSTEMS WITH N-TIER ARCHITECTURE AND 

FAMILY OF GRAPH BASED CIPHERS 

 
Abstract. Discovery of q-regular tree description in terms of an infinite system of 

quadratic equations over finite field Fq had an impact on Computer Science, theory 

of graph based cryptographic algorithms in particular. It stimulates the 

development of new graph based stream ciphers. It turns out that such encryption 

instruments can be efficiently used in GIS protection systems which use N-Tier 

Architecture. We observe known encryption algorithms based on the 

approximations of regular tree, their modifications defined over arithmetical rings 

and implementations of these ciphers. Additionally new more secure graph based 

ciphers suitable for GIS protection will be presented. 

Algorithms are constructed using vertices of bipartite regular graphs D(n,K) 

defined by a finite commutative ring K with a unit and a non-trivial multiplicative 

group K*. The partition of such graphs are n-dimensional affine spaces over the 

ring K. A walk of even length determines the transformation of the transition from 

the initial to the last vertex from one of the partitions of the graph. Therefore, the 

affine space Kn can be considered as a space of plaintexts, and walking on the graph 

is a password that defines the encryption transformation. 

With certain restrictions on the password the effect when different passwords with 

K*)2s, s <[(n+5)/2]/2 correspond to different ciphertexts of the selected plaintext 

with Kn can be achieved. 

In 2005, such an algorithm in the case of the finite field F127 was implemented for 

the GIS protection. Since then, the properties of encryption algorithms using  

D(n, K) graphs (execution speed, mixing properties, degree and density of the 

polynomial encryption transform) have been thoroughly investigated. 

The complexity of linearization attacks was evaluated and modifications of these 

algorithms with the resistance to linearization attacks were found. It turned out that 

together with D(n, K) graphs, other algebraic graphs with similar properties, such 

as A(n, K) graphs, can be effectively used. 

The article considers several solutions to the problem of protecting the geological 

information system from possible cyberattacks using stream ciphers based on 

graphs. They have significant advantages compared to the implemented earlier 

systems. 

Keywords: Stream ciphers; GIS protection; Multivariare Cryptography; Graph 

Based Cipher; graphs given by equations; regular tree approximations. 
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1. Introduction 

 

Graph Based Cryptography (GBC) area is moving with great speed into the main 

stream of computer design, Information sciences, Information and Computer 

programming, Artificial Intelligence and design, Artificial Intelligent and various 

field of research. Application of GBC is in diverse area such as Data structures, 

Communication networks and their security. A Graph-based approach centres on 

conserving the environment of security events by breaking down factors of 

observable data into a graph representation of all cyber vestiges, from all data 

aqueducts, counting for all once and present data. For secret communication, Ciphers 

can be converted into graphs. The Application of Graph Theory plays a vital role in 

various field of Engineering and Sciences. GBC is used for the key exchange, 

development of Multivariate Public Keys, key dependent message authentication 

codes and algorithms of Noncommutative Cryptography (see [30]-[47]).  

Especially Graph theory is commonly used as a tool of symmetric encryption. 

First cryptographical applications of Graph Theory appeared in the areas of 

Symmetric Cryptography and Network Security. This paper reflects some results in 

the area of applications of families of algebraic graphs of large girth of Extremal 

Graph Theory to the development of fast and secure encryption tools to process Big 

Data files. The vertices and edges of algebraic graphs form algebraic varieties 

defined over the field. The girth is the length of the minimal cycle in the graph. This 

parameter defines the size of the key space of corresponding cipher. The girth of 

several known families of algebraic graphs of large girth is not computed. It just 

evaluated via the lower bounds. 

Observed and presented new ciphers have a multivariate nature. The space of 

plaintexts is an affine variety Kn defined over finite commutative ring K. Bijective 

encryption map F can be given by nonlinear multivariate polynomials f1, f2,…, fn 

from the multivariate commutative ring K[x1, x2,…, xn]. It acts on the affine space 

accordingly the rule (x1, x2,…, xn)→(f1(x1, x2,…, xn), f2(x1, x2,…, xn),…, fn(x1, x2,…, xn)), 

where fi are given via corresponding list of monomial terms. Trapdoor accelerator 

(see [27]) is a piece of information A such that the knowledge of A allows to compute 

the reimage of F in time O(n2). 

In presented ciphers correspondents Alice and Bob shares  file A (the password) 

and encrypt according to the robust procedure in time O(n) or O(n2). The adversary 

does not have a password he/she can intercept large amount of pairs 

plaintext/corresponding ciphertext and try to approximate maps F-1 and F. So degree 

of F is an important parameter for the cryptanalytical studies. The most important 

(active) part of password are is the information about the walk in the algebraic graph. 

Section 2 is dedicated to discussion of the applications of algebraic graphs to 

protection of Geological Information Systems. We discuss the known successful 

example [2] of such application in 2005. It was based on idea of usage walks on 

regular graphs approximating infinite 127-regular. In fact the first description of 

selected graph based stream cipher based on approximations of q-regular tree where 

q is a prime power was presented at the beginning of 2001. During last twenty years 

many new results on the construction of new encryption tools and there cryptanalysis 

were obtained. They lead to understanding of multivariate nature of these algorithms 

and necessity of usage of infinite algebraic graphs defined over infinite commutative 

rings of kind Fq [x1, x2 ,…, xn] or  more general K[x1, x2,…, xn] where K is a finite 

commutative ring. Implemented in [2] encryption map is a polynomial map of 
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degree 3 such that their inverse is also cubical transformation. So, adversary can use 

linearisation attacks and after the interception of O(n3) pairs of kind 

plaintexts/corresponding ciphertext he/she can approximate the encryption map in 

time O(n10). So, Section 2 is dedicated to observation of ciphers based on algebraic 

graphs and resistant to such linearisation attacks. 

The general scheme of flexible encryption algorithm based on special family of 

algebraic graphs defined over commutative ring is presented there. The theory of 

approximations of regular trees is presented in Section 3 which contains description 

of q-regular forest approximation D(n, q), n→∞ and tree approximations CD(n, q) 

and A(n, q), n=2,3,… Analogues of these families of graphs over an arbitrary 

commutative ring are presented there together with the known results on their 

properties and applications. 

Precise description of observed graph based algorithm is given in the Section 4 

together with evaluation of the degrees of encryption map and its inverse. 

The special case of A(n, 256) defined  over the finite field F256 is selected for an 

implementation. Parameters of corresponding computer simulations are given at the 

end of Section 4. 

Last Section 5 is the conclusion. 

2. On GIS and approximations of infinite regular trees 

Security aspects of using geospatial data and Geographical Information Systems 

(GIS) are vital topics for current research. A number of publications on applications 

of GIS to Cybersecurity, National security, and Intelligence operations are rapidly 

growing (see [1], [2], [3]). Currently, GIS is an essential instrument of Decision 

Making. Despite these facts, questions on the security of GIS are relatively 

unexplored topics. Grows in the community of GIS users and the area of GIS 

applications search for new security solutions, a critical research direction. One of 

the first surveys [1], [2] with analyses of the quality and efficiency of such solutions 

published in 2005. The authors suggested using N-Tier GIS architecture.  

This paper observes the application of the primary database security categories for 

managing spatial data. These categories are analyzed from the point of view of 

application within GIS in the Global Information Space. A File System within a 

Database (FSDB) with traditional and new encryption algorithms has been proposed 

as a new GIS Security solution. An FSDB provides more safe and secure storage for 

spatial files and supports centralized authentication and access control mechanism 

in legacy DBMS. Cryptography solutions, as a topic of central importance to many 

aspects of network security, are observed in detail.  

The paper describes several traditional and new symmetric, fast and nonlinear 

encryption algorithms’ implementation with fixed and adjustable key sizes, which 

uses methods of graph-based cryptography. This article is well cited during 2005-

2018 (see proceedings of conferences on Geographical Information Systems Theory, 

Applications and Management – GISTAM). Several authors agree on the 

effectiveness of N-Tier architecture [2] and suggested methods of its usage. They 

implemented one case from the family of graph based stream ciphers defined in [4]. 

It is the case of finite field F 127. 

This is a family of graph based ciphers based on the well-known algebraic graphs 

D(n, q) of Extremal Graph Theory  (see [5], [6]) defined over the finite field Fq where 

q is a prime power. The space of plaintexts is a vector space (Fq). Used in [1], [2] 
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case of q = 127 demonstrated that corresponding DBMS is capable enough to 

provide sufficient security to spatial files. This encryption procedure can provide 

additional security to confidential and sensitive GIS information. Oracle Advanced 

Security of the Oracle DBMS supports industry-standard encryption algorithms, 

including RSA’s RC4, DES and 3DES and can be used for spatial data encryption 

with graph based algorithms.  

Custom external encryption algorithms can be integrated into that security schema 

as well. The data encryption can significantly degrade system performance and 

application response time. For performance testing, the Oracle 

DBMS_OBFUSCATION.TOOLKIT was investigated [2]. Different key length 

gives different time results, e.g. difference in time between 16 and 24-byte keys is 

about 10-20%, but the time difference between 24 and 32-byte keys is only about 

5%. It means that the new graph based stream cipher for GIS has to be compared 

well with ciphers DES, 3DES, stream ciphers RC4. Particular approaches were 

developed to encrypt large files in Oracle DBMS for the GIS objects.  

The procedure splits the data into smaller binary chunks to encrypt large data 

objects, then encrypts and appends them back to the large data object (LDO). Once 

the encrypted spatial data files have been allocated into LDO segments, they can be 

decrypted by chunks and written back to LDO. Additional LOB objects, once 

encrypted, should always be kept for the read-only spatial data files. It will save time 

for the encryption procedure during log-off. The decrypted spatial data files will be 

replaced by read-only encrypted spatial data files in the permanent primary storage 

during log-off. The implanted cipher gives a more robust binary and text file 

encryption algorithm than DES, 3DES.  

We have to report that the implemented case of D(n, q) based encryption E(n, q) 

is far from being optimal. As it was showed in [7] the increase of parameter q leads 

to faster encryption of files of the same size. Noteworthy that the usage of loaded 

multiplication tables makes immaterial the difference between case of prime q and 

composed prime powers. Such tables allow to use q=128 corresponding to the 

alphabet ASCEE with the essential speed increase comparably to implemented in 

[1], [2] q=127, where operator of taking modulo 127 is used cn times where constant 

c depends on the length of the password. The multivariate nature of D(n, q) 

encryption was noticed in [7] (see also [28] for the case of arbitrary ring K), described 

their symbolic computations turned out to be cubic. 

This fact was mathematically proved in [8] for arbitrary parameters n and q. The 

standard usage of multivariate transformation E(n, q) with two affine transformation 

T1 and T2  in the form T1 E(n, q)T2  allow us to improve drastically the mixing 

properties  of the cipher. Noteworthy that in the implemented case of E(n, 127) 

encryption the change of single characters of the plaintext leads to the change of  

48-52 percents of characters of corresponding ciphertexts. The experiment with 

special linear transformations T1 and T2 was described in [9, Ustim Kotorowicz]. To 

preserve linear time O(n) of the encryption we have to select sparce transformations, 

i. e. those with O(n) nonzero entries of corresponding matrices. Special sparce 

transformations allow us to improve drastically mixing properties of E(n, q) 

encryption. For selected in [9, Ust Kotorow] cases the single change of a plaintext 

character leads to the change of more than 98 percents of characters of 

corresponding ciphertext. As it was shown in [ust linguistic] transformation E(n, q) 

with the password of length less than [(n+5)] has no fixed points. This property 

holds for the case of ciphers of kind T1 E(n, q)(T1 )
-1. 
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More general graphs D(n, K) defined over arbitrary commutative ring K can be 

obtained via simple change of Fq
  for K (see [10]). Investigation of dynamical 

systems corresponding to these graphs showed the similarity of general graphs  

D(n, K) of the graphs defined for the case of fields (see [11], [12] and [13]). If 

passwords corresponds to tuples of characters from the multiplicative group K* of 

the ring K then different passwords of length < [(n+5)/2] produce distinct ciphertext 

from the selected plaintext. It means that case of arithmetic rings Zm of integers of 

modulo m is attractive for the implementations. 

Noteworthy that the cases of fields Fq, q = 2m of characteristic two and rings  

Z q,  q=2m are most convenient for implementations because of files in the computer 

are presented in the form 0, 1-sequences. 

Recall that the girth of a graph is the length of its minimal cycle.  The connected 

components CD(n, q), n=2, 3,… of algebraic graphs D(n, q), q>1 form a family of 

tree approximations, i. e well defined projective limit of them is an infinite q-regular 

tree. Graphs D(n, q) are edge transitive. So, their connected components are 

isomorphic. The system of quadratic equations which defines CD(n,q) were 

presented in [14]. The union of these equations gives an algebraic description of 

q-regular tree. Existence of such description is very important for Computer Science 

because a q-regular tree is the deterministic part of branching process. 

Noteworthy that the plaintext and the ciphertext of E(n, q) encryption are located 

in the same connected component  of D(n, q). Graphs CD(n, q) have a natural 

analogue CD(n, K) defined over arbitrary commutative ring K with at least two 

elements, CD(n, K) is an induced subgraph of D(n, K) (see [10]). The description of 

CD(n, K) in terms of the system of recurrent quadratic equations is given in [10] 

together with the description of CD(n, K) based encryption CE(n, K). 

It works with the space of plaintexts Km, m=3/4n +c where c, c<3 is some 

nonnegative integer constant. It is important that group of transformations of 

CE(n,K) corresponding to various passwords acts transitively on the space of 

plaintexts while the group generated by various transformations of kind E(n, K) is 

intransitive. It leads to better mixing pronperties of CE(n, K) in comparison with 

those of E(n, K). In fact we have to use T1CE(n, K)(T1)
-1 where T1 is a special sparce 

transformation of  AGLm(K).  

Another q-regular tree approximation A(n, q), q=2,3, …were defined in [15]. It 

has some advantages in comparison with graphs CD(n, q). For instance the graphs 

are defined by simple homogeneous equation with two linear and one quadratic 

monomial terms. Finite field Fq can be substituted by general commutative ring K 

and graphs A(n, K) can be obtained this way (see [15] or Extremal [13]). The girth 

g(A(n, q)) of the graphs A(n, q)=A(n, Fq) can be bounded from below via inequality   

g(A(n, q))≥[(n+2)/2] [16]. The computer simulation support the conjecture that 

A(n, Zm) based encryption with passwords from ((Zm)*) t, m>2, t is an even 

parameter <[(n+2)/4 is such that different passwords produce distinct ciphertext 

from the selected plaintext. We will use notation AE(n, K) for the A(n, K) based 

ciphers. 

To summarise written above we discuss some properties of three graph based 

steam ciphers E(n, K), CE(n, K) and AE(n, K) defined  in the case K=Fq, q>m and 

K=Zm, m>2. All of them can be used for GIS protection with described above N-tier 

architecture. For practical implementation case of large finite fields and arithmetic 

rings Zt, t=2m  is preferable. 
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The families of graphs D(n, K), A(n, K) defined over arbitrary commutative ring 

K are bipartite graphs of type (1, 1, n-1) with partition  sets which are two copies 

of  Kn  (see [17] or [11]), i.e. graphs with the incidence I=I(K)= nI(K)  between 

points (x1, x2,…, xn) and lines [y1, y2,…, yn] given by the system of equations a2x2-

b2y2= f2(x1, y1), a3x3-b3y3= f2(x1, x2  , y1, y2 ),…, anxn-bnyn= f2(x1, x2  ,…, xn-1, y1, y2  ,…, yn-1) 

where parameters a2, a3  ,…, an-1 and b2, b3  ,…, bn-1 are taken from the multiplicative 

group K* of the commutative ring K. Parameters ρ((x1, x2,…, xn))=x1 and   

ρ([y1, y2,…, yn])=y1 serve as colours of the point and the line. The following 

linguistic property holds. Each vertex of the graph has a unique neighbour of the 

chosen colour. 

Graph CD(n,K) after the elimination of computed recurrently parameters also can 

be written as linguistic graphs of type (1, 1, m-1) where m=[3/4n]+c. 

In fact the architecture require a partition of information  into blocks of the same 

size. So, parameters n and m equals to some selected constant. the length of the 

password is another even constant which has an impact on the speed of encryption. 

Other option to increase speed of execution is the increase the cardinality of the 

ground field or ring. Let us consider the general scheme of creating the cipher based 

on the family of linguistic graphs nI(K), n=2, 3, …  

Noteworthy that we can expand defined above I(K) to  the infinite linguistic graph 

I(K[x1, x2,…, xn]) defined over the ring K[x1, x2,…, xn] of all multivariate polynomials 

with coefficients from K and the variables xi, i=1,2,…, n. So points and lines of this 

graph are X=(X1(x1, x2,…, xn), X2(x1, x2,…, xn),…, Xn(x1, x2,…, xn) and  Y=[Y1(x1, 

x2,…, xn), Y2(x1, x2,…, xn),…, Yn(x1, x2,…, xn)]. The incidence of this bipartite graph 

is given by equations a2X2-b2Y2 = f2(X1, Y1), a3X3-b3Y3= f2(X1, X2, Y1, Y2),…, anXn-bnYn= 

f2(X1, X2  ,…, Xn-1, Y1, Y2  ,…, Yn-1 ), where parameters a2, a3  ,…, an-1, b2, b3  ,…, bn-1 and 

polynomials fi, i=2, 3,…, n with coefficients from K are taken from the equations  in 

the definition of the linguistic graph I(K). 

We define the polynomial map F from Kn to K n via the following scheme (see 

[29]). Take the special point X=(x1, x2,…, xn) of I(K[x1, x2,…xn]) and consider the list 

of colours g1(x1), g2(x1), …, gt(x1). We compute the path v0Iv1Iv2…Ivt where v0=X and 

vi+1 is the neighbour of vi with the colour gi(x1), i=1,2, …, t and I=I(K[x1, x2,…, xn]). 

Then the destination point vt of this path can be written as (gt(x1), F2(x1, x2), …, Fn(x1, 

x2,…, xn)). The map F is given by the rule x1→gt(x1), x2→F(x1, x2),…, xn→F(x1, x2,…, 

xn). It is easy to see that F=F(g1, g2,…, gt) is a bijective map if and only if the 

equations of kind gt(x1)=b have unique solutions for unknown x1 for each b from K.  

So family of linguistic graphs nI(K), n=2, 3,… together with family of affine 

transformations TnϵAGLn(K)  can be used as a cipher with the space of plaintexts Kn 

and the password g1(x), g2(x),…, gt(x) and the encryption map Tn(F(g1, g2,…, gt)(Tn)
-1. 

Correspondents Alice and Bob share the password given by  g1, g2,…, gt  and the 

sequence of  transformations Tn , n=2, 3,… We assume that inverse maps (Tn)
-1  are 

computed and presented explicitly. For the encryption of potentially infinite plaintext 

(p)=(p1, p2,…, pn) they will use transformation  TnF(g1, g2,…, gt)(Tn)
-1. One of them 

creates the plaintext (p) and computes the ciphertext Tn(F(g1, g2,…, gt)(Tn)
-1(p)=c 

recurrently. The procedure is the sequence of the following steps. 

S1. He/she computes (Tn)
-1(p1, p2,…, pn) =(r(1), r(2),…, r(n))=(r).    

S2. He/she computes   a(1)=g1(r1),  a(2)=g2(r1),…, a(t)=g(r1).   
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S3.  Let Na(x1, x2,…, xn) be the operator of taking the neighbour of point (x1, x2,…, xn) 

with the colour a in the linguistic graph nI(K)  and  aN(y1, y2,…, yn) be an operator of 

taking the neighbour of line [y1, y2,…, yn]   with the colour a. He/she executes the 

following operation. Computation of v1=Na(1)(r), v2=
 a(2)N(v1), v3=Na(3)(v2), 

v4=
a(4)N(v3),…, vt-1= Na(t-1)(vt-2), vt=

a(t)N(vt-1)=u=(u1, u2,…, un).  

S4. He/she computes ciphertext as T(u)=c.     

DECRYPTION PROCEDURE. 

Assume that one of correspondents received the ciphertext c. He/she decrypts via the 

following steps.  

D1. Computation of u as (Tn)
-1(c)=u and getting the solution x=r(1) of equation 

g(x)=u1. 

D2.  Computation of parameters a(1)=g1(r(1)), a(2)=g2(r(1)), …,a(t-1)=gt-1(r(1)) and 

the completion of the recurrent procedure vt-1=Na(t-1)(u), vt-2=
 a(t-2)N(vt-1),  

vt-3=Na(t-3)(vt-2), vt-4=
a(4)N(vt-3),…, v1= Na(1)(vt-2), 

r(1)N(v4t-1)=r. 

D3.  Computation of the plaintext (p) as  T(r). 

OBFUSCATION OF THE ALGORITHM. 

Let us consider the colour jump operator Ja  which transforms point (p1, p2,…, pn) 

of the graph I(K) to the point (a, p2, p3,…, pn). 

We can change the encryption map TnF(g1, g2,…, gt)(Tn)
-1 for the TnF(g1, g2,…, 

gt)Jg(Tn)
-, where Jg is  a colour jump operator   acting on points of I(K[x1, x2,…xn] 

with the colour g(x1)ϵK(x1) such that the equation of kind g(x1)=b has a unique 

solution for each parameter b from K. 

After this change assumption the bijection of  gt on K is immaterial. 

Encryption procedure requires computation of (Tn)
-1(p1, p2,…, pn) =(r(1), r(2),…, 

r(n))=(r), the computation of u accordingly step S2. the computation of Jg(u)=u’ and 

application of affine transformation Tn to the tuple u’.  

For the decryption of ciphertext c the user has to compute u’=(u’1, u’2,…, u’n)   as 

(Tn)
-1(c ), solve for x the equation g(x)=u’1, use the solution x=r(1) of this equation 

for the computation of a(1)=g1(r(1)), a(2)=g2(r(1)),…, a(t)=gt(r(1)), compute 

Ja(t)(u’)=(u)=(u1, u2,…, un) in the graph I(K) and execute procedures D3 and D4 to 

get the original plaintext. 

 

3. On families of algebraic graphs of large girth 

 

3.1. General remarks 

 

Girth and diameter of a graph are the minimal length of its cycle and the maximal 

distance of the graph. We can consider girth indicator Cind(v) of vertex v of the graph 

Γ as the minimal length the cycle through v and introduce cycle indicator Cind(Γ) of 

the graph as the maximal value of Cind(v) for its vertices. 
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The constructions of finite or infinite graphs with prescribed girth and diameter is 

an important and difficult task of the Graph Theory. Noteworthy that the incidence of 

classical projective geometry over various fields is a graph of girth 6 and diameter 3. 

J. Tits defined generalised m-gons as bipartite graphs of girth 2m and diameter m. 

Feit and Higman proved that finite generalised m-gons with bi-degrees > 2 exist only 

in the cases of m=3, 4, 6, 8 and 12. Geometries of finite simple groups of rank 2 are 

natural examples of generalised m-gons for m=3,4,6, 8. Classification of flag 

transitive generalised m-gons of Moufang type were obtained by J. Tits and 

R. Weiss. 

Infinite families of graphs of large girth of bounded degree are important objects 

of Extremal Graph Theory which were introduced by P. Erdős’. He proved the 

existence of such families via his well-known probabilistic method. Nowadays few 

explicit constructions of such families are known. The concept of infinite family of 

small world graphs of bounded degree turns out to be very important for various 

applications of graph theory. 

Noteworthy that only one family of small world graphs of large girth is known. 

This is the family X(p, q) of Ramanujan graphs introduced by Gregory Margulis [18] 

and investigated via the computation of  their girth, diameter and the second largest 

eigenvalue by A. Lubotsky, R. Phillips and P. Sarnak [19]. 

We have to admit that studies of families of graphs Γi with well defined projective 

limit  Γ, which is isomorphic to infinite tree, is well motivated. 

We refer to such family as tree approximation. There is only one approximation 

by finite graphs which is a family of large girth. This is the mentioned above family 

of CD(n, q) defined by F. Lazebnik, V. Ustimenko and A. Woldar. The question 

whether or not CD(n, q) form a family of small world graphs has been  still open 

since 1995. 

In 2013 the tree approximation by finite graphs A(n,q) which is a family of small 

world graphs was presented (see [15]). It was proven that the graph from the family 

has maximal known cycle indicator (in fact Cind (A(n, q))≥2n+2). 

One of the main statements of this paper is A(n, q) where n=2, 3,... is a family of 

large girth. 

We generalise these results in terms of the theory of algebraic graphs defined over 

arbitrary field and consider properties and applications of above mentioned graphs. 

 

3.2. On graphs A(n, q), their properties and generalisations 

 

All graphs we consider are simple, i. e. undirected without loops and multiple edges. 

Let V(Γ ) and E(Γ ) denote the set of vertices and the set of edges of Γ, respectively. 

The parameter |V(Γ )| is called the order of Γ, and |E(G)| is called the size of Γ. A path 

in Γ is called simple if all its vertices are distinct. When its convenient we shall 

identify Γ with the corresponding antireflexive binary relation on V(Γ ), i.e. E(Γ ) is 

a subset of V(Γ )×V(Γ ). The length of a path is a number of its edges. The girth of a 

graph Γ, denoted by g=g(Γ ), is the length of the shortest cycle in Γ. Let k≥3 and g≥3 

be integers. The distance between vertices v and u of the graph Γ  is a minimal length 

of the path between them. The diameter of the graph is maximal distance between 

its vertices. 

Graph is connected if its diameter is finite. Graph is k-regular if each vertex of the 

graph is incident exactly to k other vertexes. A tree is a connected graph which does 

not contain cycles. 
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(1) An infinite family of simple regular graphs Γi  of constant degree k and order 

vi  such that diam (Γi ) ≤ c logk-1(vi), where c is the independent of i constant and diam 

(Γi ) is diameter of Γi , is called a family of small world graphs. 

(2) Recall that infinite families of simple regular graphs Γi  of constant degree k 

and order vi  such that g(Γi ) ≥ c logk-1(vi),where c is the independent of i constant and  

g(Γi ) is a girth of Γi  are called families of graphs of large girth. 

Let Γ be a simple graph. Assume that Cind(x) is the minimal length of cycle 

through vertex x of the graph Γ. Let Cind(G) stand for the maximal value of Cind(x) 

via all vertices x of Γ. We refer to parameter Cind(G) as a cycle indicator of Γ. 

One of the main purposes of the paper is to present a special interpretations of  

q-regular tree (q-regular simple graph without cycles) in terms of algebraic geometry 

over finite field Fq.  

Theorem 1 [16]. For each prime power q, q >2 there is a family of q-regular 

graphs Γi satisfying following properties 

(i) Γi is a family of small world graphs, 

(ii)  Γi is a family of large girth, 

(iii) Projective limit of graphs Γi  is well defined and coincides with q-regulat tree Tq. 

(iv) Cind Γi ≥2 log q(v i /2)+2. 

We refer to family of graphs Γi satisfying condition (iii) as tree approximation. 

The prove of Theorem 1 is given via explicit construction of graphs Γi =A(i,q), i ≥2 

satisfying requirements of the statement. Noteworthy that A(i,q) is a unique known 

example of the family satisfying conditions (i), (ii) an (iii). 

In fact, there is exactly one other known construction of the q-regular family 

satisfying (i) and (ii), i.e. explicit construction of the family of regular simple small 

world graphs of large girth and with an arbitrarily large degree q. 

This family X(p, q) formed Cayley graphs for PSL2(p), where p and q are primes, 

had been defined by G. Margulis [18] and investigated by A. Lubotzky, Sarnak and 

Phillips [19]. As it is easy to see the projective limit of X(p, q) does not exist. 

The construction of A(n, q). 

Let K be a finite field Fq. We define A(n, K)=A(n,q) as bipartite graph with the 

point set P=Kn and line set L=Kn (two copies of a Cartesian power of K are used). 

We will use brackets and parenthesis to distinguish tuples from P and L.  

So (p)=(p1, p2, … , pn) ϵ Pn and [l]=[l1,  l2 , … , ln] ϵ Ln. 

The incidence relation I=A(n,K) (or corresponding bipartite graph I) is given by 

condition  p I l if and only if the equations of the following kind hold. 

p2 - l2=l1p1,   

p3 -  l3= p1 l2, 

p4 - l4 = l1p3,  

p5 - l3 = p1 l4,  

… , 

pn - ln = p1 ln-1 for odd n and pn - ln = l1 pn-1 for even n. 

We can consider an infinite bipartite graph  A(K) with points 

(p1, p2 ,…, pn ,…) and lines [l1 , l2 ,…,ln , …]. 

Proposition 1 [16]. If K=Fq, q>2 then A(n, Fq) is a family of small world graphs and  

tree approximation with Cind(A(n, Fq))≥2n+2. 

Let K be an arbitrary field. We define A(n, K) via simple change of Fq on K and 

announce the following statement. 
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Proposition 2 [16]. Let K be a field. Then the girth of A(n,K) is ≥ 2[n/2]+2. 

Symbol [x] stands for the flow function from x. Theorem 1 follows from 

propositions 1 and 2. 

 

3.3. On homogeneous  algebraic graphs of large girth 

 

Let F be a field. Recall that a projective space over F is a set of elements constructed 

from a vector space over F such that a distinct element of the projective space 

consists of all non-zero vectors which are equal up to a multiplication by a non-zero 

scalar. Its subset is called a quasiprojective variety if it is the set of all solutions of 

some system of homogeneous polynomial equations and inequalities.  

An algebraic graph φ over F consists of two things: the vertex set Q being a 

quasiprojective variety over F of nonzero dimension and the edge set being a 

quasiprojective variety φ in Q × Q such that (x, x) is not element of φ for each  

x ∈ Q and xφy implies yφx (xφy means (x, y) ∈ φ). The graph φ is homogeneous (or 

M-homogeneous) if for each vertex v ∈ Q the set {x | vφx} is isomorphic to some 

quasiprojective variety M over F of nonzero dimension. We further assume that M 

contains at least 3 elements. 

Theorem 2 [20]. Let Γ be homogeneous algebraic graph over a field F of girth g 

such that the dimension of neighborhood for each vertex is N, N ≥ 1. Then  

[(g − 1)/2] ≤ dim(V)/N. 

The following corollary is an analog of Even Circuit Theorem by Erdős’ for finite 

simple graphs. 

Corollary 1. Let Γ be a homogeneous graph over a field F and E(Γ) be a variety 

of its edges. Then dim(E(Γ)) ≤ dimV(Γ)(1 + [(g − 1)/2]-1. 

We refer to a family of homogeneous algebraic graphs φn  for which dimension of 

neighborhood  for each vertex is independent constant N, N ≥1 as a family of small 

world graphs if diameter of each graph  φn  is bounded from above by linear function 

αn +β defined by constants α and β. 

We refer to a family of homogeneous algebraic graphs φn for which the dimension 

of neighborhood for each vertex is independent constant N,  N ≥ 1 as a family of large 

girth if girth of each graph φn is bounded from below by linear function αn+β defined 

by constants α and β. 

We refer to a homogeneous algebraic graph as algebraic forest if it does not 

contain cycles. Their term algebraic tree stands for the connected algebraic forest. 

We say that family of homogeneous algebraic graphs φn is a forest (tree) 

approximation if projective limit of φn is an algebraic forest (tree) and formulate 

thaw following statement. 

Theorem 3 [16]. For each field F, F≠ F2  there exists a tree approximation which 

is a family φn of small world algebraic graphs of large girth with the vertex set of 

dimension n and cycle indicator ≥ 2n+2. 

Family of graphs φn=A(n, F) provides explicit construction of objects described in 

the theorem. As it follows from Theorem 2 homogeneous algebraic graphs A(n, F) 

form a family with maximal possible girth indicator. 

Remark 1.  Graphs A(n, F2) are disconnected. So they are disjoint union of cycles. 

Graph A(F2) is 2-regular forests with trees presented on the following diagram 

 ….   -----*-----*-----*--- .... . Girth indicator of A(n, F2) coincides with its girth of 

size ≥ 2n+2. So, formally A(n, 2) are algebraic graphs of large girth. Noteworthy that 

cycles can be defined via the system of equations. 
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3.4. Graphs  A(n,K)  as homomorphic images of D(n,K) 

 

Graphs A(n,q) obtained as homomorphic images of graphs D(n,q) which defines 

projective limit D(q) with points   

(p)=(p01, p11, p12 , p21, p22, p'22 , …, p’ii, pi i+1, pi+1,i   , p+i+1,i +1  … ), 

lines 

[l]=[ l10, l11, l12 , l21, l22, l'22 , …, l’ii, li i+1, li+1,i   , l+i+1,i +1  … ] and incidence 

relation given by equations  

lii-pii=l10 pi-1,i ;     

l’ii – p’ii = li,i-1 p01; 

li,i+1 – p i,i+1 =lii p01 ; 

l i+1i - p i+1,i = l10p’ii . 

This four relations are defined for i≥1, (p’11= p11, l’11= l11). 

Remark 2. You can see that indexes of vectors correspond to coordinates of 

positive roots of root system  A1 with a wave. 

Historically graph D(q) is not the first example of description of q-regular forest 

in terms of Algebraic Geometry. Geometries of buildings (see [21] and further 

references) corresponding to extended Dynkin diagram A1 as incidence structures are 

q+1-regular trees or q+1-regular forests. As a result we get a description of a tree in 

group theoretical terms. 

In [22] it was noticed that the  restriction of this incidence relation on orbits of 

Borel subgroup B- acting on maximal parabolics are q-regular bipartite graphs. So 

we get a description of a q-regular tree in terms of positive roots of A1 with a wave. 

In [5] authors proved that D(n,q) defined via first n-1equations of D(q) form a 

family of graphs of large girth. The general point and line of these graphs are 

projections of (p) and [l] onto the tuples of their first n coordinates. 

Unexpectedly it was discovered that these graphs are disconnected if n ≥ 6. So 

forest D(q) contains infinitely many trees and the diameter is an infinity. F. Lazebnik 

conjectured that connected components of graphs D(n,q), n =3,4, … form a family 

of small world graphs. This conjecture is still open. 

In 1994 it was found out how to describe connected components CD(n, q) of 

graphs D(n, q) in terms of equations (see [14], [6]). 

Graphs A(n, q)  were obtained in 2007 as homomorphic images of graphs D(n, q) 

([11]). Corresponding homomorphism ή is a procedure to delete coordinates of 

points and lines with indexes (i+1, i) and (i,i)'. 

The self importance of these graphs have been justified in joint research with 

U. Romanczuk (see [13] and further references) and M. Polak [23] via applications 

to Cryptography and Coding Theory.  

In the case of families of graphs of large girth we would like to have ''speed of 

growth'' c of the girth ''as large as it is possible''.  

P. Erdos' proved the existence of such a family with arbitrary large but bounded 

degree k with c=1/4 by his  probabilistic method. 

In the case of families X(p,q) and CD(n,q) the constant c is 4/3. In the case of 

A(n,q) we  just get inequality  1≤ c<2. So exact computation of the girth is the area 

of the future research. 

There are essential differences between family of graphs X(p, q) and tree 

approximations. Recall that the projective limit of X(p, q) does not exist.   
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It was proved that bipartite graphs A(n,q) are not edge-transitive and not vertex 

transitive (transitivity on points and intransitivity on lines). Noteworthy that their 

projective limit T (the tree) is obviously an edge-transitive infinite graph. 

The usage of generalizations and modifications of graphs A(n,q) allows us to 

construct postquantum cryptosystem of El Gamal type with encryption procedure for 

potentially infinite vector from Fq with the execution speed O(n 1+2/n) (see [24]). 

In fact the diameter of A(n,q) is growing slower than diameter of X(p,q). So, A(n,q) 

are the best known small world graphs among known families of large girth. Recall 

the girth of A(n,q) is not yet computed precisely.  

So, the comparison of growth of the girth for A(n,q) and X(p,q) is the interesting 

task for the future research. 

In the case of finite fields both families are expanding graphs, the second largest 

eigenvalue of A(n, q) tends to 2q1/2, they are not Ramanujan graphs for which the 

second largest eigenvalue has to be bounded above by 2(q-1)½. 

The family X(p,q) is formed by Ramanujan graphs, so they are better expanding 

graphs than A(n, K). 

Families X(p,q), CD(n,q) and A(n,q) can be used for the constructions of LDPC 

codes for noise protection in satellite communications. D. MacKay and M. Postol 

[25] proved that CD(n, q) based LDPC codes have better properties than those from 

X(p,q) for the constructions of LDPC codes. 

Together with Monika Polak we proved that A(n,q) based LDPC codes even better 

than those from CD(n,q) (see [23]). 

Cayley nature of X(p,q) does not allow to use these graphs in multivariate 

cryptography. Various applications of graphs D(n,q), CD(n,q) and A(n,q) have been 

known since 1998. 

The most recent postquantum cryptosystem based on noncommutative 

multivariate group associated with A(n,q) is described in [24], IACR e-print Archive 

2021/1466.  

 

3.5. On the equations for  graphs CD(n, K) 

 

Let K stand for an arbitrary commutative ring. Noteworthy that graphs A(n, K) and 

D(n, K) are defined over arbitrary commutative ring K have been already presented.  

To facilitate notation in the future results on ”connectivity invariants” of D(n, K), 

it will be convenient for us to define p-1,0 = l0,-1 = p1,0 = l0,1 = 0, p0,0 = l00 = -1, 

p’0,0 = l’0,0 = -1, p1,1 = p’1,1, l1,1 = l’1,1 and to assume that our equations are 

defined for i ≥ 0. 

Graphs CD(k,K) with k ≥ 6 were introduced in [11] for as induced subgraphs of 

D(k,K) with vertices u satisfying special equations a2(u)=0, a3(u)=0,…, at(u)=0, 

t=[(k+2)/4], where  u = (uα, u11, u12, u21, …, ur,r , u’r,r , ut t+1 u r,r +1, u r+1,r ,…), 2 ≤r ≤t, 

α ϵ{ (1, 0), (0,1)} is a vertex of D(k, K) and ar = ar(u)=Σi=0,r(u ii u' r-i, r-i-u i,i+1 u r-i,r-i-1) 

for every r from the interval [2,t] for every r from the interval [2,t]. 

We set a=a(u)=(a2, a3, …, at) and assume that D(k, K)=CD(k,K) if k=2,3,4,5. 

As it was proven in [11] graphs D(n, K) are edge transitive. So their connected 

components are isomorphic graphs. Let vCD(k,K) be a solution set of system of 

equations a(u)=(v2,v3,…,vt)=v for certain v ϵKt-1. It is proven that each  vCD(k,K) is 

the disjoint union of some connected components of graph D(n,K). 
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It is easy to see that sets  of vertices of  vCD(k,K), v ϵKt-1 form a partitions of the 

vertex set of D(n,K). 

The concept of quasiprojective variety over commutative ring K can be introduced 

via simple substitution of K instead of field F. It leads to concepts of homogeneous 

algebraic graphs over K, forest and tree approximations and families of graphs of 

large girth over K. It was proven that for the case of commutative ring K with unity 

of odd characteristic graphs CD(n,K) are connected (see [26]). So graph 

CD(n,q)=CD(n, Fq) for odd q is a connected component of D(n,q).   

As it follows from definitions the image of restriction of homomorphism ή from 

D(n, K) onto CD(n, K) coincides with A(n, K). 

So graphs A(n,K) are connected for the case of K with unity of an odd 

characteristic. 

Theorem 4 [16]. For each commutative integrity ring K the families of graphs 

CD(n, K), n=2,3,… and A(n, K),n=2,3,.. are forest approximations and families of 

graphs of large girth.  

 

4. On the description of selected algorithms based on algebraic graphs of large 

girth 

 

To achieve linear speed O(n) of the encryption described in Section 1 functions  

gi, i=1,2,..,t are selected in the form x1+c(i), c(i)ϵK and the parameter t will be 

selected within the interval [2, [(n+5)/2]) when I(K)=D(n, K) or I(K)=CD(n, K)  and 

interval [2, [n/2]+1) in the case when I(K)=A(n, K). 

Additionally we take parameters b(1), b(2), …,b(k) , a(1), a(2),...,a(k), k=t/2 from 

K* to construct c(i)  recurrently via the following rules c(1)=b(1), c(2)=a(1), 

c(i)=c(i-2)+b(i) if i, i≥3 is odd n and c(i)=c(i-2)=a(i) if i, i≥4 is even. We refer to 

the tuple (b(1), b(2),…, b(k), a(1), a(2),…,a(k)) as active password and affine 

transformation T as passive password.  

Our choice insures that in the case of constant passive password the single change 

of a single character of active password leads to a change of the ciphertext produced 

from the selected plaintext.    

We choose an affine transformation T in the form of linear map given by the 

following rule 

T(x1)=x1+m(1)x2+…+m(n-1)xn-1 where m(i), i=1,2,…, n-1 are elements of K*. 

T(xi)=xi for i=2,3,…, n. So T-1 (x1)=x1-m(1)x2-m(2)x3-…-m(n-1)xn. T-1 (xi)=xi for 

i=2,3,…, n.  

Recall that explicit description of linguistic graphs D(n, K) and A(n,K) is given in 

the previous section and general encryption algorithm is described in section 2. So, 

ciphers T E(n,K) T-1 and  TEA(n, K) T-1 have full description. 

In the case of graph CD(n, K) we  will use in fact the induced subgraph hCD(n, K), 

h=(h2, h3,…, ht), t=[(n+2)/4]  of D(n, K) of all points and lines u=(uα, u11, u12, u21, …, 

ur,r , u’r,r , ut t+1 u r,r +1, u r+1,r , …) satisfying conditions ai(u)=hi. 

Linguistic graph hCD(n, K) can be thought as bipartite graph with points 

(p)=(p01, p11, p12 , p21, …, , pi i+1, pi+1,i   , p+i+1,i +1  … ), i=2,3,…, t-1 

and lines  

[l]=[ l10, l11, l12 , l21, l22,  …, li i+1, li+1,i   , l+i+1,i +1  … ], i=2,3,…, t-1 of length 

n-t. 
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Their incidence is given by the following system of equations 

lii-pii=l10 pi-1,i ;     

li,i+1 – p i,i+1 =lii p01; 

l i+1i - p i+1,i = l10p’ii, 

where p’ 22 is defined by the equation a2(p 01 , p 11 , p 12,  p 21, p 22, p’22 )=h2  and can 

be written as  p’22 = a 2(p01, p11, p12, p21, p22, p’22)-h1+p’22 = b2(p01, p11, p12, p21, p22), 

other parameters are p’33= a3(p01, p11, p12, p21, p22, p’22 , p2,3, p 3,2, p3,3 p’3,3)-h3 +p’33 

= b3(p 01 , p 11 , p 12,  p 21, p 22, p’22, p 2,3,  p 3, 2, p , 33),…, p’tt=at(p01, p11, p12, p21, p22, 

p'22,…, p’t-1,t-1, pt-1,t, p t, t-1 , pt,t , p’t,t  )- ht +p’t,t =bt(p01, p11, p12 , p21, p22, p'22 , …,  

p’t-1,t-1, pt-1,  t, p t, t-1 , pt, t ). 

The computation of symbolic expressions p’i,i recurrently and their explicit 

substitution in the system of equations give us the equations of the linguistic graph. 

We assume that corresponding cipher has the space of plaintexts Kn-t. We use 

active passwords (b(1), b(2),…, b(k), a(1), a(2),…,a(k)) an  linear transformations T 

of Kn-t constructed via described above rules. We assume that parameters h2, h3,…,ht 

will be considered  as part of  active password and denote the cipher as  

TCE(n, K)T-1TnF(g1, g2,…, gt)Jg(Tn)
-. 

We will use presented in Section 2 obfuscation scheme for each cipher  

TE(n, K)T-1 TAE(n, K)T-1 and TCE(n, K)T-1 in the case K=Fq, q>2. We use special 

disturbance function g of Ig selected as x→xe+b where bϵFq, eϵZd, d=q-1 and  

(e, d)=1. So, the notations DE(n, K) =TE(n, K)IgT
-1 and DA(n,K)= TAE(n, K)IgT

-1  

and DC(n,K)=TCE(n, K)IgT
-1  will be used for these encryption schemes with the 

disturbance. 

Algorithms with the encryption maps TE(n, K)T-1 and TAE(n, K)T-1 independently 

on the choice of active and passive passwords have multivariate encryption and 

decryption functions of degree 3. In [45] the linearisations attacks on these ciphers 

with the interception of O(n3) pairs plaintext/cipheretext are presented. They can be 

executed in polynomial time O(n10). 

The ciphers  DE(n, K) and DA(n, K) use cubical encryption maps as well but the 

usage of disturbance map D: x→xe lead to the increase of the degree r of inverse 

maps. Parameter r can be evaluated from below by the polynomial degree of 

transformation D-1 acting on the elements of multiplicative group K*. So, if K=Fq, 

q=232 then the order of polynomial decryption map is at least 231. It justifies that 

direct linearisation attacks are not feasible. 

Case TCE(n, K)T-1 is principally different. As it follows the results of [46] the 

encryption function corresponding to selected active password has degree 

[(n+2)/4]+2. Recall that active password is formed by tuples (b(1), b(2),…, b(k), 

a(1), a(2),…,a(k)) and (h2, h3,…, ht) where h_i are internal parameters of  subgraph 

hCD(n, K). If k is less than half of the girth then different active passwords produce 

distinct ciphertexts. 

High degree of the transformation insures that a generation of standard form for 

the encryption function can not be done in polynomial time. 

So the directed linearisation attacks are theoretically impossible. Principle 

difference of DC(n, K) and TCE(n, K)T-1 is the fact that the usage of disturbance 

implies the fact that the degree of inverse function is essentially higher than those 

for encryption function. 
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The implemented case 

For the first implementation we select the case of encryption function of  

DA(n,K)= TAE(n, K)IgT
-1  for finite field F256 with g of kind g = x2+b. In this case 

the degree of encryption map will be at least 128 (see [27]). The linearisation attacks 

by adversary requires the interception O(n3) pairs of kind plaintext/ciphertext. After 

that he/she need approximate the map of degree ≥ 128 with the possibility to choose 

the plaintext an get corresponding ciphertext. In practical case of n ≥ 64 such 

linearisation attacks are unfeasible. 

CRYPTALL 4 software is written in C++ programming language and therefore it 

is portable and runs in many platforms such as Unix/Window. Thecontext diagram 

is depicted in Fig. 1. The interface is friendly. It allows users to enter active and 

passive password of selected length. The program is supported by key exchange 

protocol based on Eulerian transformations of (F*
256). It allows the elaboration of 

tuple of nonzero field elements of sufficient length to form both passwords. 

 

Fig. 1. Context Diagram of CRYPTALL 4 

 

Experimental Measurements. To evaluate the performance of our algorithm, we 

use with different size of files. We denote by t (k, L) the time (in millisecond) that is 

needed to encrypt or decrypt (because of symmetry). The file size is in kilobytes for 

passwords of length L. Then the value of t(k, L) can be represented by the following 

matrix (Fig. 2). 

 

L\k 3000 4000 5000 6000 

4 1143 1535 1755 2120.75 

8 2162.25 2999.75 3452.5 4150 

12 3070.5 4108 5061.25 6053 

16 4090.5 5429.25 6673.5 7945.75 

20 5131.75 6778.75 8303 9873.75 
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Fig. 2. Run time for CRYPTALL 4 System 

 

Computer experiment justifies that in implemented case the speed of execution of 

decryption or encryption procedures are essentially higher than in the case of stream 

cipher of [2] used for GIS protection. New algorithm has essentially better mixing 

properties (see [47]). 

5. Conclusion 

The main theoretical result of the paper is explicit construction of the family of 

multivariate map of affine maps Fn  with the trapdoor accelerator of linear degree cn, 

c=3/4 acting on affine space Kn defined over arbitrary commutative ring K with at 

least 3 elements. Corresponding cipher has execution speed of kind ¼ n2+O(n) 

which is proportional to the length of active password of size 0(1). The decryption 

procedure takes the same time with the encryption process. In the case of choice of 

special linear conjugation T it has nice mixing properties: change of single character 

of the plaintext or active password leads to the change of ≥ 98% of characters of 

corresponding ciphertext. 

So Fn based cipher can provide essentially better security than the cipher selected 

in [2]. The disadvantage of Fn is speed of encryption O(n2) but not O(n). So the usage 

of Fn will drastically improve the security level of GIS protection but essentially 

slow down of speed of spatial information processing. 

Noteworthy that speed of processing is very important parameter. That is why we 

suggest usage of ciphers DE(n, K) and DA(n, K) for GIS protection  which are more 

robust in the comparison of cipher chosen in [2], they have essentially better mixing 

properties and practically resistant against linearisation attacks. Ciphers DE(n, K) 

and CE(n, K) can be chosen in the case of tasks where security aspects are more 

important than the execution speed. 
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В.О. Устименко, О.С. Пустовіт 

ПРО БЕЗПЕКУ ГІС-СИСТЕМ З N-РІВНЕВОЮ АРХІТЕКТУРОЮ ТА 

СІМЕЙСТВA АЛГОРИТМІВ ШИФРУВАННЯ, ВИЗНАЧЕНИХ ЗА ГРАФАМИ  

Анотація. Відкриття опису q-регулярного дерева в термінах нескінченної системи 

квадратних рівнянь над скінченним полем Fq мало вплив на розвиток Інформатики, 

зокрема теорії криптографічних алгоритмів, що визначаються за графами. Це 

стимулювало розвиток конструкцій безпечних потокових алгоритмів шифрування. 

Виявилося, що такі інструменти шифрування можна ефективно використовувати в 

системах захисту ГІС, що вживають N-рівневу архітектуру. Ми оглянемо відомі 

алгоритми шифрування, засновані на aпроксимаціях регулярних дерев, їх модифікації, 

визначені над арифметичними кільцями, та програмні реалізації цих алгоритмів. Крім 

того, будуть представлені нові більш безпечні алгоритми потокового шифрування, 

придатні для захисту ГІС. 

Алгоритми будуються з використанням блукань на вершинах дводольних 

регулярних графів D(n,K), визначених за скінченним комутативним кільцем К з 

одиницею та нетривіальною мультиплікативною групою К*. Долі таких графів є  

n-вимірними афінними просторами над кільцем К. Блукання парної довжини визначає 

перетворення переходу від початкової до останньої вершини з однієї з долей графу. 

Отже, афінний простір Kn можна розглядати як простір відкритих текстів, а блукання 

на графі паролем, який визначає перетворення, що шифрує. 

При певних обмеженнях на паролі досягається ефект, коли різним паролям з (K*)2s, 

s <[(n+5)/2]/2 відповідають різні шифрограми обраного відкритого тексту з Kn. У 2005 

році такий алгоритм у випадку скінченного поля F127 використовувaвся для захисту 
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ГІС. З цього часу властивості алгоритмів шифрування з використанням графів D(n, K) 

(швидкодія, властивості зміни, степінь та густина поліноміального перетворення 

шифрування) були ретельно досліджені. Було оцінено складність атак лінеаризації та 

знайдено модифікації цих алгоритмів із стійкістю до атак лінеаризації. Виявилося, що 

разом з графами D(n, K) можна ефективно використовувати й інші алгебраїчні графи з 

подібними властивостями, такі як графи A(n,K). 

У статті розглядаються кілька розв’язань задачі захисту геологічної інформаційної 

системи від можливих кібератак за допомогою потокових алгоритмів, що спираються 

на графи. Вони мають істотні переваги в порівнянні з реалізованими раніше 

алгоритмами. 
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