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DATA ARRANGEMENTS TO TRAIN AN ARTIFICIAL NEURAL
NETWORK WITHIN SOLVING THE TASKS FOR CALCULATING
THE CHEZY ROUGHNESS COEFFICIENT UNDER UNCERTAINTY
OF PARAMETERS DETERMINING THE HYDRAULIC
RESISTANCE TO FLOW IN RIVER CHANNELS

Abstract. Hydraulic calculations and mathematical modelling of open flows in river
channels keep still being among the most topical hydro-engineering today’s
problems in terms of practice. While solving them, independently on the research
topic and purpose, and methods used, a number of simplifications and assumptions
are usually accepted and applied. Moreover, there is a range of methodological,
structural, and parametric uncertainties, which to be overcome require complex
empirical pre-researches. First of all, these uncertainties relate to assessing
hydraulic resistances and establishing numerical characteristics of them, which
depend on many factors varying spatially and temporally.
One of the most frequently used integral empirical characteristics expressing the
hydraulic resistance to open flows in river channels is the Chézy roughness
coefficient C. However, despite a large number of empirical and semi-empirical
formulas and dependencies to calculate the Chézy coefficient, there is no ideal way
or method to determine this empirical characteristic unambiguously. On the one hand,
while opting for an appropriate formula to calculate the Chézy coefficient, we need
to take into account practical experience based on comprehensive options analysis
considering different empirical equations used alternatively to represent the
hydraulic resistance to open flows. On the other hand, the fullness and
comprehensiveness of field researches of numerous hydro-morphological factors
and parameters characterizing various aspects of the hydraulic resistance to open
flows can also have an essential role. In particular, the accuracy assessment of the
Chézy coefficient computing based on field data, despite methods and formulas,
indicates that the accuracy of field measurements of the parameters included in
selected formulas largely determines the relative error of such calculations.
This paper deals with the problem of data arrangements and the development of
general rules for the formation of training and test samples of data to train artificial
neural networks being elaborated to compute the Chézy coefficient taking into
account the parametric uncertainty of data on the hydro-morphological factors and
parameters characterizing the hydraulic resistance in river channels. The problem
is solved on the example of an artificial neural network of direct propagation with
one hidden layer and a sigmoid logistic activation function.
Keywords: artificial neural networks; Chézy’s roughness coefficient; data
arrangements; hydraulic resistance in river channels; parametric uncertainty
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1. Introduction

The concept of hydraulic resistance is widely used to solve numerous practical
hydro-engineering and fluid mechanics tasks, in particular, those relating to open
flows in river channels [1-4]. Among them, first of all, we need to note common
hydraulic calculations of the river channels’ capacity and the position of the free
water surface of open streams [1, 3, 4]. The notion of hydraulic resistance is also
used while solving the special tasks of mathematical modelling of streams with free
surface in canals and river channels within one (1D) and two-dimensional (2D) flow
models of shallow water (non-linear de Saint-Venant equations) describing unsteady
open channel flow [5-10]. For instance, the above-mentioned models are applied in
numerous modern computational modelling systems, such as the HEC-RAS River
Analysis System supporting steady and unsteady flow water surface profile
calculations, sediment transport computations, and water quality analyses, etc. [11].
The shallow water models keep successfully competing with more advanced today’s
hydrodynamic solutions based on the Navier-Stokes equations of the real fluid
motion and Reynolds’ averaged equations of turbulent water flow, which describe
the behaviour of an unsteady three-dimensional flow. Applying them, we avoid
assumptions and simplifications that are connected with the hydraulic resistance
concept usage. However, results obtained from traditional hydraulic calculations and
flow modelling due to 1D and 2D shallow water models may be used as boundary
conditions for the next computations based on the Reynolds and Navier-Stokes
equations [12-14]. Such an approach can essentially simplify solutions to complex
real-world case study tasks of hydrodynamics [13]. Some additional examples of
recent pieces of literature relating to the use of 1D and 2D flow models of shallow
water are also highlighted in [15-18].

Relying on hydraulic resistance concept when performing traditional hydraulic
calculations and mathematical modelling of open flows in river channels, we keep
repeatedly dealing with the complex challenge relating to determining numerical
characteristics of hydraulic resistance in spite of this problem has long been
considered by hydraulic scientists and engineers. Regarding practice, it has still been
discussed even in terms of a friction factor (namely, the Darcy-Weisbach friction
factor) [19-23] or a roughness coefficient [24-33] usage as appropriate hydraulic
resistance numerical characteristics. In the last case, in term of a roughness
coefficient, there are also two options, namely, which of them, the Manning
roughness coefficient or the Chézy roughness coefficient might fit better.

Admittedly, there are three practically equivalent empirical equations (or
appropriate empirical models) linking mean flow velocity V to the hydraulic
resistance numerical characteristics. They are the Chézy, Manning (Gauckler-
Manning or Gauckler-Manning-Strickler), and Darcy-Weisbach equations, which
may be summarized as [1, 3, 4, 30-33]:

89-R-S
V=C/R-S; =—R3 [s; = g =t )

where C is the Chézy roughness coefficient (m¥?/s), n is the Manning (Gauckler-
Manning) roughness coefficient (s/m*?), and 4 is the Darcy-Weisbach friction
factor; V =Q/ A is the depth-averaged or cross-sectional averaged velocity (m/s),
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Q isthe water discharge (m3/s), A= B-h isthe cross-sectional area of the flow (m?),

B is the average flow width (m), h is the average flow depth (m), R = A/P is the
hydraulic radius (m), P is the wetted perimeter (m), S; is the energy grade line

slope (or the water surface slope); g is the gravitational acceleration (m/s?).

Usually, the Chézy roughness coefficient C and the Manning roughness
coefficient n are used in calculating the averaged velocity of open flows; the Darcy-
Weisbach friction factor 4 is more common in calculating the averaged velocity of
water movement in pipelines [1, 3, 4]. However, there are no formal restrictions on
the use of one or another numerical characteristic of hydraulic resistance,
independently on whether it is an open flow or a water movement in a pipeline. The
Darcy-Weisbach formulation of hydraulic resistance is used for open flows either
[6, 9, 19-23, 26].

Formally, if we take into account the equivalence of equations (1) the following
simple relationships between the roughness coefficients C , n, and the friction factor
A may be established:

the Chézy roughness coefficient C will relate to the Darcy-Weisbach friction

factor 1 as[3, 4, 33]:
89 89
C=.=2,1=-"1; 2
5 = ©)

the Gauckler-Manning roughness coefficient n will relate to the Darcy-Weisbach
friction factor 4 as [15, 19, 33]:

/l-Rm 8g-n?
n= , A= X 3

and, eventually, the Chézy roughness coefficient C will relate to the Manning
(Gauckler-Manning) roughness coefficient n as:

1w . C
C_HR ,n_w. 4

Practice shows, it does not matter what the kind of characteristic of the hydraulic
resistance to open flow in river channels we use, whether it is the friction factor 4
or one of the two roughness coefficients, either the roughness coefficient C or n.
More important is how fully it can characterize the hydraulic resistance in a real-
world case study, as well as how accurately we can calculate numerical values of the
appropriate characteristic relating to this case study.

It should be noted that historically the first empirical equation linking mean flow
velocity V to the hydraulic resistance was the Chézy formula, which was obtained
by the famous French hydraulic engineer Antoine de Chézy in 1775. It concerned

the velocity of pipe flows, but in the modified form V =C,/R-S; Chézy proposed

to use this dependence for open channel flows as well. In general, Chézy’s equation
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can be considered as the most generalized empirical model in open-channel
hydraulics [1, 3, 4]. We tried showing it in Fig. 1.

( 1775 w
Chézy's equation

¥=C [R-5;
il 3 3 +
1845 1867
Darsy-Weisbach’s Gauckle r—lI.anning’s
equation c_ %8 o 1gus equation
A ] 1.2
K- V=—gr3|S
F= m & Y - r
i
3g-n’ A-p3
> A= = -
a3 Bg

Fig. 1. Flow-chart to explain relationships between the Chézy, Gauckler-Manning, and
Darcy-Weisbach equations in the context of empirical models of the hydraulic resistance to
open flows in river channels

The next empirical equation was the Darcy-Weisbach formula. It was first
proposed by Julius Weisbach in 1845 and relates the head loss Ah due to friction
along a given length L of pipe with diameter D to the average velocity V of the
fluid flow for an incompressible fluid as [1, 3, 4, 23, 34]:

2
Ah:ﬂ.L.V_, (5)
D 2g

where the dimensionless friction factor A is regarded as a function of relative
roughness and the Reynolds number (Re) characterizing flow regime.

At present, in hydraulics, there seems to be no formula more accurate or
universally applicable than the Darcy-Weisbach equation (5) supplemented by the
Moody diagram or Colebrook equation [34]. Therefore, a lot of modern formulas
and dependencies proposed to calculate the Chézy resistance coefficient are derived
from the relationship (2), which links the Chézy coefficient with Darcy-Weisbach’s
friction factor [19, 20, 23, 33]. The latter one, in turn, is also determined due to
various empirical formulas [20, 22, 28, 29, 35].

The third, Gauckler-Manning’s formula was first presented by the French
engineer Philippe Gauckler in 1867 and later re-developed by the Irish engineer
Robert Manning in 1890 [1, 3, 4]. This equation can be obtained by use of
dimensional analysis. Moreover, in the 2000s the Gauckler-Manning formula was
derived theoretically using the phenomenological theory of turbulence [36, 37].

The Gauckler-Manning formula is not so universal one as the Chézy and Darcy-
Weisbach equations. It can only be applied to streams that have a free surface, such
as an open channel, etc. This formula can be considered as a kind of approximation
of the Chézy formula, namely, as a partial case of Chézy’s equation, when the Chézy
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coefficient values relate to the Gauckler-Manning roughness coefficient n values
according to the relationship (4). In addition, in contrast to the Darcy-Weisbach
friction factor 4, the Gauckler-Manning roughness coefficient n does not depend
on the Reynolds number and flow regime, which needs being taken into account
while analysing hydraulic resistance.

To sum, in term of quantitative presentation of the hydraulic resistance to open
flows in river channels, the Chézy roughness coefficient C can be thought to be the
most complete empiric numerical characteristic compared with the Darcy-Weisbach
friction factor 4 and Gauckler-Manning roughness coefficient n. This is because
natural watercourses like rivers are characterized by a significant variety of hydro-
morphology conditions changing in space and time. Usually, the hydro-
morphological changes occur constantly, although stochastically, seasonally, and
regularly. Sometimes, they occur sporadically on large scales. The hydraulic
resistance to open currents in river channels can depend on manifold elements of
roughness such as bottom ridges, dunes, and riffles, turns and bends of a channel,
heterogeneity of size and shape of a river channel along its length, including
suspended sediments and bottom deposits, vegetation, ice, and others. In some parts
of a river, at local scales, essential hydro-morphological changes can occur due to
compressions of river channels and floodplains because of temporary formations,
such as ice gorges, rubbish of logging, recent alluvial deposits, etc. As a result,
similar water levels in rivers can be observed at different water discharges, and vice
versa [38]. Human activity can also change dramatically the hydraulic resistance
within a river channel and within its floodplain. Herewith, errors, oversights, and
flaws in determining the hydraulic resistance, especially when it comes to
forecasting flood danger, can result in catastrophic consequences (Fig. 2).

The Halych town inundation A flooded solar power plant

Fig. 2. Consequences of the June flood of 2020 on the Dniester River near the Halych town
(from www.pravda.com.ua)

Thereby, the comprehensive pre-studies relating to estimation of the hydraulic
resistances in river channels can be thought an urgent need. In particular, the current
comprehensive research of integral empirical numerical characteristics of the
hydraulic resistances would open up significant opportunities to prompt flood risk
management on rivers. Considering the variety of hydro-morphology and hydrology
of rivers, the Chézy roughness coefficient C seems the fittest numerical
characteristic to present the hydraulic resistance to open flows in river channels
comparing with other integral empirical characteristics, namely, the Darcy-Weisbach

ISSN: 2411-4049. Exonoriyna Ge3neka Ta npuponokopuctysanss, Ne 2 (42), 2022



friction factor 4 and Gauckler-Manning roughness coefficient N. The Chézy
coefficient seems to be the most holistic and dynamic numerical empirical
characteristic comparing with others. The Chézy coefficient enables to control more
factors and parameters determining the hydraulic resistance to open flows in river
channels. Using it, we can take into account features of individual river sections and
their hydraulic regimes. Eventually, the friction factor 4 and roughness coefficient
N are often included to formulas and dependencies to calculate the Chézy roughness
coefficient C just as needed components.

2. Generalization of the problem. The research aim and objectives

Currently, there are a lot of different empirical and semi-empirical formulas and
dependencies in order to calculate the Chézy roughness coefficient values within
solving real-world tasks of hydro-engineering calculations and mathematical
modelling of open flows in river channels. In the previous study [33], we examined
and systematised some well-known of those presented in the literature on open-
channel hydraulics, in reference books, tutorials, manuals, and articles highlighting
the results of original research on analyzing the hydraulic resistance to flow in open
channels. Moreover, numerous publications on mathematical modelling of uniform
and non-uniform water flow within 1D and 2D flow models of shallow water were
reviewed. In total, we gathered 43 empirical dependencies to compute the Chézy
coefficient values, as well as 13 empirical dependencies that can be used to calculate
the Gauckler-Manning roughness coefficient values. Based on these dependencies,
near 250 empirical equations can be compiled to compute the Chézy coefficient
values taking into account hydro-morphology peculiarities of river channels, various
flow regimes, specific application limits of the formulas, etc.

We divided all examined empirical formulas to compute the Chézy coefficient
into five groups [33]. The four groups are represented with explicit dependencies,
which allow calculating the Chézy coefficient values directly due to values of the
parameters included in those formulas. The fifth group consists of implicit formulas,
which need applying a trial-and-error procedure (iterative calculation).

The first group of explicit formulas, those we analysed and systemised [33],
consists of thirteen dependencies the Chézy coefficient C on the Gauckler-Manning

roughness coefficient n and the hydraulic radius R :
C=f(nR), (6)

where the Gauckler-Manning roughness coefficient n characterises the roughness
of the banks and bottom of river channels and floodplains; the roughness coefficient
n values can be obtained in different ways, in particular, due to selecting them from
published in the literature on open-channel hydraulics n-value tables [1, 3, 4, 24, 25],
or using special empirical formulas; some of them (thirteen dependences) we gave
in [33].

Provided that the average flow width B >> h and R = h, instead of the hydraulic
radius R, the dependencies (6) may include the average flow depth h: C = f(n, h).

Some dependencies entering the group (6) may also include the water surface slope
S+ as an additional parameter.
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Among the formulas of the type of (6) used to calculate the Chézy roughness
coefficient values we have to mention the well-known and frequently cited in
literature pieces the Manning, Guanguillet-Kutter, Forchheimer, and Pavlovskii
formulas [1, 3, 4, 29, 33]. These formulas are now the most common to compute the
Chézy coefficient C in various applications. They can be applied for both mountain
and plain rivers, both small and medium or large rivers, rivers with earthen or
indelible channels. Most of them are considered to be acceptable when values of the
Gauckler-Manning roughness coefficient n range from 0.011 (for example, these
are closed conduits flowing partly full uncoated or concrete culvert with bends,
connections, and some debris, lined or built-up channels with a smooth concrete
trowel finish, etc. [1]) to 0.04 (including excavated or dredged and not maintained
channels with a clean bottom and brush on the side, as well as natural plain streams,
mostly clean, but with some weeds and stones, including floodplains with light brush
and trees in summer, and mountain streams, no vegetation in channels with gravels,
cobbles, and few boulders in their bottom [1]), and values of the hydraulic radius R
range from 0.1 to 5.0 m [33]. Some dependencies may be used even in cases where
the roughness coefficient n values reach as much as 0.2 (for example, these are
mountain rivers with extremely high resistance with channels composed of boulders
or floodplains with trees, dense willows in summer [1]), and the hydraulic radius R
values up to 20.0 m [33]. In turn, when estimating the roughness coefficient values,
if necessary, it may be taken into account river channel geometry features including
meandering and cross-section shape; water-surface profile; roughness because of
friction within river bed and due to bank sediments, debris and sediment transport;
roughness attributable to vegetation, ice cover, natural and artificial obstructions,
and other flow-retarding factors in channels and floodplains.

The second group of explicit formulas, those we defined and systemised, consists
of fourteen dependencies in which the Chézy roughness coefficient values are
determined based on the relationship (2) between the Chézy coefficient C and the
Darcy-Weisbach friction factor 4.

In general, there can be two sorts of roughness influencing the Darcy-Weisbach
friction factor 4 as the integral characteristic of hydraulic resistance to flows in river
channels [33]. The first sort of roughness in terms of the hydraulic resistance to flows
in river channels relates to the micro-roughness characterised by the height of
protrusions of roughness A depending on the size of the bottom fractions of
sediments. With taking into account this sort of roughness, the Chézy roughness

coefficient C, is established, which is determined as a function of the height of
protrusions of roughness A and hydraulic radius R :

C, = f(A,R). )

In particular, among the formulas of the type of (7) used to calculate the Chézy
roughness coefficient C, values it should be noted the Strickler, Colebrook-White

and Williamson formulas [19, 20, 23, 28, 33]. The formulas of the type of (7) are
usually used to compute the Chézy roughness coefficient for mountain and foothill,
mostly small and medium-sized rivers, which have practically non-erosion gravel-
pebble, pebble-boulder channels.
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The second sort of roughness in terms of the hydraulic resistance to flows in river
channels relates to the macro-roughness characterized by the size (the height h, and

length 1, ) of the bottom ridges (riffles, dunes, etc.) and other similar channel
formations. With taking into account this sort of roughness, the Chézy roughness
coefficient C, is established, which is determined as a function of the height h, and

length |, of the bottom ridges, and hydraulic radius R :
C, =f(h,,I,,R). (8)

Among the formulas of the type of (8) used to calculate the coefficient C, values

it can be noted the Knoroz, Snischenko, and Sterenlicht-Polad-zade formulas
[33, 39-42]. However, the formulas of the type of (8) have been developing mainly
for large canals and plain rivers, where there are conditions to exist of the bottom
ridge phase of sediment movement.

In exceptional cases, if we need to take into account the micro- and macro-
roughness simultaneously the Chézy coefficient can be written as [33, 39, 40, 42]:

1 1 1
e ®

Instead of the hydraulic radius R, the dependencies (7), (8) may include the
average flow depth h: C, = f(A, h), C, = f(h,,I,,h). The height of protrusions of
the roughness A of a channel is usually equated to the average diameter d of soil
particles making up the bottom and banks of a river channel: A = d [33]. It should

also be noted that formulas of the types of (7) and (8) do not include the hydraulic
slope S ¢ ; however, some formulas of the type of (7) include the Reynolds number

Re.

In general, the dependencies of the type of (7) and especially ones of (8) do not
have wide applications in practice. However, they can be successfully used for
estimating hydraulic resistance within gauged river sections, where detailed field
research is conducted on a regular basis [33, 45].

The third group of explicit formulas, those we singled out and analysed [33],
involves six special dependencies to compute the Chézy coefficient values taking
into account the effect of the water surface slope S; and hydraulic radius R :

C=f(S¢,R). (10)

Practice shows that it is especially important to pay attention to the hydraulic
slope while assessing the hydraulic resistance characteristics in the case of unstable
river channels and variability of floodplain morphological characteristics. Usually,
the hydraulic resistance to flow in open river channels keeps changing due to the
variability of seasonal hydraulic and hydro-morphological conditions. Sometimes,
these changes occur unpredictably. At the same time, the purposeful monitoring of
the water surface slope enables taking into account the influence of various hydro-
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morphological factors on hydraulic resistance within river sections where conditions
change dynamically. Altogether, the hydraulic slope may be considered a kind of an
indirect integral hydraulic resistance characteristic. In particular, the main feature of
formulas of the type of (10) is that they contain neither the Gauckler-Manning
roughness coefficient n, nor micro- and macro-roughness parameters used to define
the Darcy-Weisbach friction factor 4. On the contrary, the water surface slope S ;

is often used as one of the key parameters in some empirical formulas to calculate
the roughness coefficient N (Bray’s, Jarrett’s, Sauer’s formulas [25, 33]).

Among the formulas of the type of (10) used to compute the Chézy coefficient
values it should be noted Matachievitch’s, Winkel’s, and Altshuhl-U-Van Thein’s
formulas [33, 44]. As well, provided that the average flow width B >>h and R=h,
instead of the hydraulic radius R, the dependencies (10) may include the average
flow depth h: C = f(S¢,h).

Currently, formulas of the type of (10) do not have wide applications in practice.
Their usage scope is limited to partial cases, mostly such as earthen canals and
canalized rivers, small and medium, foothill and plain rivers with relatively stable
self-regulating channels. There are also some restrictions relating to values of the
hydraulic slope S, hydraulic radius R (or average flow depth h), and average

flow width B . However, we consider using the dependencies of the type of (10) as
a promising approach to computing the Chézy coefficient in gauged rivers, including
monitored rivers by means of modern GNSS technology applications. One of key
advantages of the approach seems that the accuracy of the water surface slope
determination depends mostly on the accuracy of water level measurements being
carried out instrumentally and, usually, with relatively high accuracy [33]. This can
minimise the influence of human errors while monitoring the water surface slope.
Accordingly, being the simplest element in terms of direct measurements of the river
flow [33], the ongoing water level measurements can provide a quite reliable
underpin to compute the Chézy coefficient properly with using dependencies of the
type of (10).
The fourth group of explicit formulas we generalized as:

C=f(B,R), (11)

where R is the hydraulic radius, B is the average flow width.

These are formulas, where the ratio (B/R) is used to take into account the shape
of a river channel cross-section in terms of determining the hydraulic resistance to
open flow [39, 42]. Therefore, these formulas can also be summarised as [33]:
C = f(B/R). We found only four similar formulas that can be attributed to the
group (11). Often, in practical applications, a uniform open flow with an arbitrary
cross-sectional shape is reduced to a flat flow with the average flow depth h. Then,
instead of the hydraulic radius R, the dependencies (11) may include the average
flow depth h: C = f(B,h).

Among the implicit formulas, those we analysed and systemised [33], the most
common are formulas of the type of C, = f(A, R,CA). In particular, these are the
Colebrook-White [23, 46], Thijse [47], and Powell [1, 29] formulas. Being derived
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from the Darcy-Weisbach friction factor 4, these dependencies involve also the
Reynolds number Re as an additional parameter. Among the implicit formulas,
where the Gauckler-Manning roughness coefficient n and hydraulic radius R are
used, we might recommend the Agroskin-Zheleznyakov equation [39]. It is a
formula of the type of C = f(n, R,C). Moreover, provided that the average flow
width B >>h and R = h, instead of the hydraulic radius R, the average flow depth
h may also be used: C, = f(A,h,C,), C=f(n,h,C).

Below, Fig. 3 shows the results of our examination of relationships between the
Chézy roughness coefficient C and main parameters needed to compute it.

Parametiers needed to compute the Chézy roughness coefficient €

Explicit formulas Implicite formulas

|

c=flnR.C)

-

Cy=FlA. R)
C, = fik,.1,.R)

Qe =
O ® | & ®O ®

R,andif B>»h then R=h

C= fin R) ‘

L

Parameters: n is the Gauckler-Manning roughness coefficient; S¢ is the water

surface slope; R is the hydraulic radius; B is the average flow width; h is the
average flow depth; A is the height of protrusions of roughness; h; is the height and

I, is the length of the bottom ridges (riffles, etc.); Re is the Reynolds number

Fig. 3. Flow-chart showing the relationships between the Chézy roughness coefficient C
and main hydro-morphological parameters needed to compute it

According to Fig. 3, the different parameters needed to compute the Chézy
roughness coefficient may be divided into two characteristic groups. The first group
consists of special parameters presented in formulas of a certain type. These are, for
example, the Gauckler-Manning roughness coefficient n, height of protrusions of

roughness A , water surface slope S, and the average flow width B . In the flow-

chart (Fig. 3), the circles highlight the key parameters presented in all formulas of a
certain type, the pentagons — additional ones, which are only used in some formulas
of a certain type. The second group includes the hydraulic radius R or, provided that
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B >> h, the average flow depth h. One of these parameters is required in all
formulas to compute the Chézy coefficient, regardless of their type.

While choosing an appropriate formula for calculating the Chézy roughness
coefficient, we should take into account the availability and quality of information
about all parameters and focus on the formulas with special parameters whose values
are less questionable. Further, depending on flow conditions and factors affecting
hydraulic resistance in the river channel section under study, we can choose the best
formula of a certain type. If necessary, we can also focus on more detailed research
on a special parameter fitting most to solve the task.

In general, as practice shows, regardless of area research, methods and tasks, in
modelling and making decisions under data uncertainty, it is important to consider
all available information [7, 48-53]. This allows you to implement a comprehensive
and holistic approach to solving the problem. Taking into account all available
information can be especially useful at the stage of preliminary research, when
priorities have not been yet sufficiently identified. Engaging all available
information can be useful in data analysis and their arrangements, as well as in
modelling, computing of model parameters, and in decision-making processes,
including final decision-making stages.

Supporting the comprehensive and holistic approach to hydraulic resistance
research, we propose performing the Chézy coefficient calculations using an
artificial neural network (ANN). Among the priority tasks needed preliminary
solving to achieve that we consider the problem of correct data arrangements to train
an ANN. In this research, we tried solving the problem of correct data arrangements
to train ANNSs being elaborated to calculate the Chézy coefficient on the example of
an ANN of direct propagation with one hidden layer and a sigmoid logistic activation
function. The main purpose of the study was to develop general rules for the
formation of training and test data samples when creating ANNs to compute the
Chézy coefficient under parametric uncertainty. To achieve the aim of the study, the
following main objectives were set and carried out: (1) generalization of the problem
relating to computing the Chézy roughness coefficient, including defining and
studying of the subject area; (2) data processing and analysis relating to key
parameters defining the Chézy roughness coefficient values; (3) modelling of the
ANN to compute the Chézy roughness coefficient, opting of the ANN components
and its structure; (4) supervised learning (training and testing) of the proposed ANN
with processing examples based on using sets of paired inputs and desired outputs
learning; (5) analysis of obtained results with detecting challenges and difficulties
relating to computing the Chézy roughness coefficient values by means of the
proposed ANN, and outlining ways of their overcoming.

3. Materials, methods, main assumptions, and constrictions of the study

This study keeps a continuation of our previous work [33]. There, on the basis of
different pieces of literature, we reviewed, analysed, and systematised a wide set of
the well-known and frequently cited empirical and semi-empirical formulas and
dependencies, which might be used to compute the Chézy roughness coefficient in
cases of open river channels taking into account application limits in term of hydro-
morphological conditions. In order to clarify some of the problematic issues related
to the use of the reviewed formulas, we have more carefully revised pieces of
classical literature on open channel hydraulics [1, 3, 4], reference books, tutorials,
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and manuals [24, 25, 39-42], articles highlighting the results of original research on
estimating hydraulic resistance [2, 19-23, 26, 27, 30-32, 34, 36, 37, 43, 44], including
materials of articles devoted to the peculiarities of computing the Chézy roughness
coefficient values [28, 29, 35, 46, 47], as well as publications on mathematical
modelling of uniform and non-uniform water flow in open channels [7-14, 16-18].
In total, we analysed more than 40 different formulas that can be used while the
Chézy roughness coefficient calculating, and revealed the specifics of the use of
different formulas depending on the available data, limitations and conditions of
their practical applications. In addition, there was studied the problem of the origin,
propagation, estimation, and overcoming of the uncertainty of the parameters
included in these formulas and hydraulic models [48, 49, 51, 53, 54]. In particular,
this research allowed clarifying the tasks of defining and studying the subject area
(1), and data processing and analysis relating to key parameters defining the Chézy
roughness coefficient values (2).

When researching, we used different methods within the holistic approach to the
problem under study [55-59]: historical method; method of dialectical cognition and
generalised scientific methods of theoretical and empirical research; heuristic
methods; methods of analysis and synthesis; methods of expert evaluation and
comparison; methods of formalization and modelling. Moreover, we used modern
methods of intelligent data analysis [60, 61], methods of decision making under
uncertainty [7, 49, 50, 52, 62], as well as methods and models of artificial
intelligence, including ones relating to development and application of ANNs to
solve various application problems [63-72].

This article is devoted to solving the problem of correct data arrangements and
the development of general rules for the formation of training and test samples of
data to train ANNs being planned to be elaborated to compute the Chézy roughness
coefficient taking into account the parametric uncertainty of data on the hydro-
morphological factors and parameters characterizing the hydraulic resistance in open
river channels. The problem is solved on the example of an ANN of direct
propagation with one hidden layer and a sigmoid logistic activation function. The
training of the ANN and its testing is planned to be carried out taking into account
the following hydro-morphological parameters: the Gauckler-Manning roughness
coefficient n and water surface slope S ; the average flow width B and depth h;

the height of protrusions of roughness A and hydraulic radius R . It is assumed that
multicollinearity between the parameters n, Sy, B, A, h,and R is absent or can

be neglected. Taking into account the relationships between the Chézy coefficient
and the defining parameters (Fig. 3), samples of input variables (x;, x,) are
prepared. Using them, the ANN, according to the algorithm shown below in Fig. 4,
calculates the Chézy coefficient C = f(xl, xz) as a dependent variable, where,

X1 e{n,A,Sf,B} and x, € {h,R} are considered as independent variables. As a

result, the ANN of direct propagation with one hidden layer and a sigmoid logistic
activation function performs approximation of continuous C = f(xl, x2) functions.

The training of the ANN is carried out on the learning samples (xl, xz,C) using the
method of inverse error propagation [65].
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Fig. 4. Flow-chart showing the algorithm of computing the Chézy roughness coefficient C
values by means of the ANN under study

To train and test the ANN, a limited amount of field data on hydro-morphological
characteristics was used. They related to two channel sections on the Dnieper River
(within the city of Kyiv and downstream of Kyiv), the Desha River section near
Chernihiv, and the Pripyat River section near the town of Turiv. These areas are
characterized by a straight earthen channel with a simple cross-sectional shape and
calm current (the Froude number, Fr << 1). Training and testing the neural network
was carried out within the following limits of change of hydro-morphological
parameters: the water discharge Q = 48.8 +~ 3665.0 m®/s; the average flow velocity

V =Q/A =0.336+0.968 m/s, where A is the cross-sectional area of the flow (m?);
the water surface slope S; =0.000036 + 0.00016; the average flow depth h =1.0 +
6.2 m; the average flow width B =122.0 + 611.0 m; the Gauckler-Manning roughness
coefficient n = 0.027 + 0.045; the Chézy roughness coefficient C = 27.0 +~ 48.1
(Table 1). Field data regarding these hydro-morphological parameters were taken

from the Hydrological Yearbooks of the Central Geophysical Observatory named
after Boris Sreznevsky [73].

Table 1 — Hydro-morphological data used in the ANN training and testing

Q A B h S 108 n C

(m¥s) | (m?) | (m) | (m) (s/m™) | (m*fs)
545.1 | 1125 | 375 | 3.0 | 0.045 0.029 41.8
Dnieper, Kyiv (training) 1433 | 1768 | 393 | 4.5 0.067 0.028 46.7
1842 | 1988 | 398 | 5.0 | 0.074 0.027 48.1
1082 | 1551 | 388 | 4.0 | 0.060 0.028 45.2
787.2 | 1336 | 382 | 3.5 0.052 0.028 43.6

Rivers, channel sections

Dnieper, Kyiv (testing)
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Q A |'B | h g q| N c
(m¥s) | (m?) | (m) | (m) (s/m™) | (m2/s)
657.4 | 1956 | 575 | 3.4 0.046 0.045 27.0
1123 2403 | 586 | 4.1 0.054 0.040 314
3665 | 3787 | 611 | 6.2 0.079 0.031 43.7
Dnieper, downstream of | 1763 | 2858 | 505 | 4.8 | 0063 | 0036 | 356

Rivers, channel sections

Dnieper, downstream of
Kyiv (training)

Kyiv (testing) 2601 | 3320 | 604 | 55 | 0.071 | 0.033 | 39.7

188.0 | 501.8 | 125 | 4.0 | 0.036 | 0.041 | 311
Desna, Chernihiv 2494 | 580 | 129 | 45 | 0.040 | 0.040 | 322
(training) 403.7 | 742.4 | 135 | 55 | 0.046 | 0.039 | 34.2

4975 | 826.3 | 138 | 6.0 | 0.049 0.038 35.1
Desna, Chernihiv (testing) | 321.2 | 660.3 | 132 | 5.0 0.043 0.039 33.3
48.8 122 | 122 | 1.0 0.16 0.032 31.6
Pripyat, Turiv (training) 89.0 | 1954 | 130 | 1.5 0.128 0.033 32.9
248.6 | 437.3 | 146 | 3.0 | 0.087 0.034 35.1
136,3 | 273 | 136 | 2.0 | 0.109 0.033 338
189.7 | 3538 | 142 | 2.5 | 0.097 0.034 34.5

Pripyat, Turiv (testing)

In order to correctly use the actual data for training and testing the ANN, they
were normalised. Numerical data were converted in such a way as to obtain their
model values varying in the range between 0 and 1. In particular, for the purpose of

normalization, the parameter B was replaced with a ratio S -B-h71[74]. Instead

of parameters V., h, C, model characteristics V -102, h-.102, C -102 were
considered. Parameters S; and n remained unchanged. Training data samples

consisted of normalized values of the characteristics obtained with uniform linear
interpolation in the vicinity of the observed values of parameters. The observed
values that were used as test examples were not included in the training samples.

4. The ANN used in the study
4.1. The ANN architecture

Usually, a multilayer direct propagation ANN (a multilayer perceptron) with a
nonlinear activation function to approximate continuous functions is used. Such a
neural network is considered as a hierarchical structure in which neurons are
structured in layers. In a fully connected ANN, each neuron in one its layer is
connected to all neurons in its next layer. Neurons of the input layer in such networks
transmit input signals to the first hidden layer without converting them. In hidden
neurons, sequentially, layer by layer, there is a nonlinear conversion of signals. Each
network neuron produces a weighted sum of its inputs, passes this value through the
activation function and gives the output value. Signals from the last hidden layer
arrive at the neurons of the output layer, which eventually form the ANN response
[63-65, 67, 71, 72].
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In practice, it is often used one or two hidden layers [64, 65]. It is known that the
perceptron with even one hidden layer is a very powerful computing system [63]. In
turn, an additional hidden layer can significantly increase the complexity of
calculations, processing time, and the risk of the ANN retraining [71, 72, 75].

The ANN we used to compute the Chézy roughness coefficient C = f (%, X, )is
a fully connected direct propagation neural network with one hidden layer. The
network has 2 inputs, 4 neurons in its hidden layer and 1 neuron in its output layer.
Examples of similar networks are given in [63-65, 71, 72, 75].

Fig. 5 shows the neural network architecture as a set of such blocks: the input
layer that receives the parameters (x;, X,) values and transmitting them (without

conversion) to the next layer neurons; the weight matrix W* = {ijl) i=12, =1_4}

containing the weight values of inputs for the all hidden layer neurons; the hidden
layer containing four neurons, each of which calculates the weighted sum

2 _

sj=2% -wfjl) . j=14 of its inputs, conducts the sum value through the activation
i=1

function F(sj ) and transmits the resulting value to the next layer; the weight matrix

W2 = {vvsz), i=14, j =1} containing the weight values of relationships of the each

hidden layer neuron with the output neuron; the output layer containing one neuron
in which the weighted sum of its inputs is calculated and the Chézy roughness

4
coefficient value is determined: C =Y F(s;)- ngz) ,j=1.
i1

Output layer [ C= iF(si)-w(__z) ,j=1 ]
i-1 y

. 2 . - Fig. 5. Flow-chart
Hidden layer F(sj) 5, =2X WE ) J=L showing the
izl architecture of the

ﬁ ANN under study

Input layer [ (x], xz): X, € {n,A,Sf,B}, X, € {k,R}]
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The ANN uses a direct propagation network model with a linear source neuron;
the sigmoid (logistic) activation function is applied to the neurons of the hidden layer
[64, 65]:

1
- , 2
F6) 1vePs (2

where the parameter £ influences the steepness of the transition.

The advantage of the function (12) is a quite convenient expression of its first
derivative [64, 65]:

F'(s)=B-F(sN1-F(s)), (13)

that allows effectively using different algorithms for the ANN learning, where, in
turn, parameter £ (in our case study g = 1) allows amplifying weak signals and

adjusting the learning speed of the network.
4.2. The ANN algorithm to compute the Chézy roughness coefficient values

According to the proposed ANN architecture (Fig. 5) and the recommendations [65],
the following algorithm for computing the Chézy roughness coefficient C was

developed. It consists in gradually calculations of the outputs of all neurons yj(l)
and y@ in the network in the direction from the first to the last layer of neurons

performed by parameter (x,, x,) values and weight matrices W*, W?; the neuron
of the output layer forms the result of the network work as [65]:

2 . —
y;®=F(s;) s =%, j=14, (14)
i=1
4 .
Y@ =2y w?  j=1, Clx, %)= y®, (15)
i=1

where yj(l), j =14 are output values of the hidden layer neurons, F(sj) is the
neuron activation function (12), x; is an input parameter, ngl) are weight

coefficients of connections of each input layer neuron with all neurons of the hidden
layer, ijz) are weight coefficients of connections of each hidden layer neuron with

the neuron of the output layer, y(z) is the ANN output value.
4.3. The ANN training
The Python object-oriented programming environment [70-72, 76] was applied to

build and train the neuron network (Fig. 5). The ANN training was carried out by
adjusting the weights of connections between neurons of all its layers using the
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inverse error propagation algorithm [64, 65]. The learning factor was assumed to be
0.01. The software implementation of the computational algorithm for learning of
the ANN being created to predict the Chézy coefficient C is given in [77].

The ANN weight coefficients were adjusted on a series of real case examples of

the parameters (xl, xz) values, where x; e {n,A,Sf , B} ,and x, e {h, R}, in such a
way as to achieve a reduction in the error between the predicted (computed) C, and

observed (reference) C, values of the Chézy coefficient C . The Chézy roughness

coefficient reference C, values were calculated on actual data of hydrological
observations with the Chézy formula as:

Co=— B (16)

A-JR-S;

where Q, is the observed water discharge (m%s), A is the cross-sectional area of

the flow (m?), R is the hydraulic radius: R=h as B>>h, B is the average flow
width (m), h is the average flow depth (m), S is the water surface slope.

The initial values of the weight coefficients were set randomly, near to zero. At
each iterative step (epoch in learning), at the ANN entrance, in turn, training
examples were input and the output values of the neural network were computed,
which were further compared with the reference values with error estimating. The
network error was also calculated for the hidden layer neurons. The obtained error
values were used to recalculate weight coefficients according to the inverse error
propagation algorithm [64, 65, 71, 72]. Then, the transition to the next learning epoch
was made or, when the required number of epochs was performed or the
computational error amounted to an acceptable value the algorithm was stopped.

The ANN learning algorithm includes the following sequence of steps
implemented in the program code of the Python module C_ANN_training.py [77]:

1. Initialization of the ANN parameters.

2. Direct course of calculations.

3. The reverse course of calculations.

4. Checking the ANN training adequacy.

5. Storage of the ANN learning outcomes.

The proposed computational algorithm implements the classical approach to
learning multilayer neural networks using the method of inverse error propagation
[63-65, 67, 72, 78]. Herein, the number of learning epochs, the value of learning
speed, the amount of learning error, the number of neurons in the hidden layers of
the network, etc. are selected by the developer (expert) empirically applying a trial-
and-error procedure. Further, the ANN training results are used in predicting the
values of the Chézy coefficient C by means of a computer program developed on
Python (See, the Python module C_ANN_calculating.py [77]).

4.4. The ANN testing

The ANN testing was carried out according to the actual data of hydro-
morphological observations (Table 1), which were not used in the network training.
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The testing procedure consisted of a comparison of the actual (observed, gauged)
Q, and forecasted (predicted) Q, water discharge values:

Q,=C,-AJR-S; (17)

where C, is the predicted (computed by means of the ANN) Chézy roughness
coefficient value (Table 2).

Table 2 — The identified (observed) and computed (predicted) Chézy coefficient C
values

The Chézy roughness coefficient values (m*/?/s):

Rivers, channel sections C,, calculated (identified) Cp , computed by

with the formula (16) means of the ANN
Pripyat, Turiv 45.0308 36.8622
Pripyat, Turiv 35.4731 36.8624
Desna, Chernihiv 33.1753 36.8632
Dnieper, Kyiv 33.8147 36.8623
Dnieper, Kyiv 39.6453 36.8624
Dnieper, downstream of Kyiv 43.6760 36.8622
Dnieper, downstream of Kyiv 34.4313 36.8623

Table 3 shows the actual (observed, gauged) and forecasted (predicted) water
discharge values, as well as absolute and relative errors of discharge forecasts
performed using the tested ANN.

Table 3 — The actual (observed) and forecasted (predicted) water discharges

Discharges (m?s) Absolute | Relative
Rivers, channel sections observed, | predicted, | errors errors
Q, Qp (m3s) | (per cent)
Pripyat, Turiv 136.3 148.0 11.7 8.6
Pripyat, Turiv 189.7 203.8 141 7.4
Desna, Chernihiv 321.2 356.7 35.5 111
Dnieper, Kyiv 787.2 664.9 122.3 155
Dnieper, Kyiv 1082.0 886.3 195.7 18.1
Dnieper, downstream of Kyiv 1763.0 1830.8 67.8 3.8
Dnieper, downstream of Kyiv 2601.0 2419.9 181.1 7.0

To assess the forecast (predictive) skill of the ANN the Nash-Sutcliffe model
efficiency coefficient (NSE) was used [79]. At present, this criterion is widely
applied for assessment of the predictive power of hydrological models [80].

In our case study, the NSE coefficient was calculated as:

ISSN: 2411-4049. Exonoriyna Ge3neka Ta npuponokopuctysanss, Ne 2 (42), 2022



7
> (Qoi —Qpy)’?
NSE =1—|:17—_ y (18)
2.(Qo,i — Qo)

i=1

where Q,;, Qp; are observed and predicted values of water discharges for a river

channel section i, i =17; Q, is the mean of the observed discharges Qy,i -

It is thought, in the situation of a perfect model with an estimation error variance
equal to zero, the resulting Nash-Sutcliffe Efficiency equals 1 (NSE = 1). Values of
the NSE nearer to 1, suggest a model with more predictive skill.

In our case study the NSE = 0.9818. It can signify the forecast (predictive) skill
of the ANN is quite high.

Moreover, we used an application of NSE in regression procedures (i.e. when the
total sum of squares can be partitioned into error and regression components).
Herein, the Nash-Sutcliffe efficiency (NSE;) is considered equivalent to the
coefficient of determination (R?). Fig. 6 shows the graphical illustration of the NSE,
assessing. Its value confirms the high predictive skill of the ANN as well.
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Fig. 6. The graphical illustration of the Nash-Sutcliff model efficiency criterion NSE,
assessment

It should be noted, the NSE coefficient is sensitive to extreme values and might
give sub-optimal results when the dataset contains large outliers. Usually, some
subjective threshold indicating that the model can be objectively accepted or rejected
based on the Nash-Sutcliffe model efficiency coefficient is the NSE = 0.3.

5. Discussion
Predicting the Chézy roughness coefficient values to present the hydraulic resistance
to open flows in river channels is a complex challenge burdened by parametric

uncertainty of data relating to hydro-morphological parameters. There is also the
methodological uncertainty connecting with opting for an appropriate empirical
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dependency among lots of different empirical and semi-empirical formulas
involving various parameters. One of the most promising approaches to overcome
such a kind of uncertainty might be the use of artificial neural networks (ANNS).
However, this approach needs preliminary solving of the problem on correct data
arrangements to train ANNs being developed, taking into account all available
information on influential parameters determining the hydraulic resistance,
especially in cases as the necessary data are not reliable enough, as well as
incomplete, and ambiguous ones.

To study the problem of applying neural networks to predict the Chézy coefficient
values using empirical and semi-empirical formulas and dependencies taking into
account the parametrical uncertainty of the necessary data, we examined an ANN of
direct propagation with one hidden layer and a sigmoid logistic activation function.
The ANN testing results indicate the prospects of using such networks in predicting
the empirical characteristics of hydraulic resistance to open flows in river channels
within certain limitations and applications.

First of all, they confirm that the proposed (not overtrained) neural network of
direct propagation with one hidden layer and a sigmoid logistic activation function
computing the Chézy coefficient C = f(xl, x2) in terms of input variables (x;, x, ),

where x; e {n,A, St, B} ,and x, € {h, R}, can forecast (predict) only some averaged

values of the C within a chosen subject area (including rivers, channel sections, and
variation of hydro-morphological parameter values) (Fig. 7).
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Fig. 7. The Chézy coefficient C values: predicted (computed) by means of the ANN, and
identified (calculated) with the formula (16) according to data of hydrological observations
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Herein, according to the results of the ANN testing, the prediction relative error
of the Chézy coefficient C values depending on the river and the channel section
varied from 3.9 to 18.1 percent. Its average value was 10.3 percent.

It should be noted, similar values of the prediction relative error were also
recorded for water discharges computed by means of the ANN (See above Table 3).
It ranged from 3.8 to 18.1 per cent, and on average was 10.2 per cent. At the same
time, the predictive skill of the ANN checked according to the Nash-Sutcliffe model
efficiency coefficient (NSE), occurred to be high enough (NSE = 0.9818). In general,
this may indicate that the proposed neural network is able to predict the Chézy
coefficient values with sufficient accuracy in terms of practice, provided the correct
arrangements of data relating to the subject area. For example, an appropriate
hierarchy of data arrangements may include a certain type of a river, its separate
channel section with a certain type of fluvial-morphological process [74] and other
hydro-morphological peculiarities of river channels [1-4], as well as acceptable
variation of hydro-morphological parameter values including seasons, etc. There are
also wide opportunities to advance to further improve the neural network. For
example, it is possible to apply an ANN with more hidden layers [65-68, 75], as well
as combinations of different activation functions for different layers of neurons,
including genetic algorithms for approximate computing of initial values of weight
matrices, etc. [64-72, 75]. In addition, an ensemble of neural networks can be used
to increase the approximation accuracy of the Chézy roughness coefficient output
values in conditions of parametric uncertainty of data relating to hydro-
morphological characteristics [65, 67], combining several separate neural networks
into an ANN with a common architecture.

Conclusions

1. Developed were general rules to the arrangements and the formation of training
and test samples of data needed to create ANNs aimed to compute the Chézy
roughness coefficient taking into account the parametric uncertainty of findings
regarding the hydro-morphological factors and parameters characterizing the
hydraulic resistance to flows in river channels. The study was performed on the
example of an ANN of direct propagation with one hidden layer and a sigmoid
logistic activation function. The training of the ANN and its testing was carried out
on the actual data related to several channel sections on the Dnieper River (within
the city of Kyiv and downstream of Kyiv), the Desna River channel section near
Chernihiv, and the Pripyat River channel section near the town of Turiv.

2. To achieve the aim of the study, the following objectives were set and carried
out: (1) generalization of the problem relating to computing the Chézy roughness
coefficient, including defining and studying of the subject area; (2) data processing
and analysis to provide correct their arrangements in computing the Chézy roughness
coefficient values by means of ANNSs; (3) modelling of an ANN to compute the
Chézy roughness coefficient, including opting of the ANN components and its
structure; (4) supervised learning (training and testing) of the proposed ANN by
processing examples based on using a set of paired inputs and desired outputs
learning; (5) analysis of obtained results with detecting challenges and difficulties
relating to computing the Chézy roughness coefficient values by means of the
proposed ANN and outlining ways of their overcoming.
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3. The algorithm of calculating the Chézy coefficient C as a dependent variable
C=1f(x, %) was developed, where, x, ein,A,S¢,Bf and x, e {h,R} were

considered as independent variables (predictors) representing such parameters as the
Gauckler-Manning roughness coefficient n, height of protrusions of roughness A,
water surface slope S ¢, average flow width B, average flow depth h, and hydraulic

radius R . The training of the ANN was carried out using the method of inverse error
propagation.

4. The ANN testing was performed on a comparison of the observed (gauged)
Q, and computed (predicted) Q, water discharges. To assess the forecast

(predictive) skill of the ANN, the Nash-Sutcliffe model efficiency coefficient (NSE)
was used. We suppose the value of NSE = 0.9818 might signify the quite high
predictive skill of the ANN. The prediction relative error of water discharges ranged
from 3.8 to 18.1 per cent; on average, it was 10.2 per cent.

5. According to the results of the ANN testing, the prediction relative error of the
Chézy coefficient C depending on rivers and channel sections varied from 3.9 to
18.1 percent. Its average value was 10.3 percent. Thereby, it was established that the
proposed (not overtrained) neural network of direct propagation with one hidden
layer and a sigmoid logistic activation function computing the Chézy coefficient

C= f(xl, X2) can forecast (predict) only some averaged values of the C within a

chosen subject area (including different rivers, channel sections, and variation of
hydro-morphological parameters). It was shown that the proposed ANN is able to
predict the Chézy coefficients with sufficient accuracy for practice, provided the
correct arrangements of data relating to the subject area.
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SA.B. Xonnesuy, 1.B. Crepanummx

HIITOTOBKA JTAHUX JIJISI HABUAHHSA IITYYHOI HEHPOHHOI MEPEXI
IOPU PO3B’SI3AHHI 3AJJAY PO3PAXYHKY KOE®IHIEHTA HIOPCTKOCTI
HIE31 3A YMOBU HEBU3HAYEHOCTI NAPAMETPIB, 10 BU3HAYAIOTH
T'IAPABJIYHUI OIIIP TEYIi B PYCJIAX PIYOK

Anomayisn. I'iOpaeniuni po3paxynku ma mamemamuyme mMoo0ent08anHs iOKpUMUX meyii
Y pycaax pivok 00cCi 3anuuiaromuvcsi OOHUMU 3 HAUAKMYATbHIWUX 2I0POMEeXHIYHUX 3a0ay
cyuachocmi 3 mouxu 30py npakmuxu. IIpu ix po3e 'sa3yeanti, He3anexcHO 8i0 memu ma memu
00CNi0dICEeH S, BUKOPUCTAHUX MEeMO00i8 MOW0, 3a36Uall NPULLMAEMbCS MA 3ACMOCOBYEMbCS
pAao cnpoujens ma npunyuens. Kpim mozo, icHye HU3Ka Memooon02iYHUX, CIMPYKMYPHUX i
napamempuyHux He8UsHayeHoCcmel, NOOONAHHA AKUX BUMA2AE CKIAOHUX eMNIPUYHUX
nonepeownix oocniodcennv. Ilepw 3a 6ce, yYi HeBUSHAUEHOCMI CMOCYIOMbCA  OYIHKU
2I0pasNIvHUX ONOPI68 MA GCMAHOBIEHHS IX YUCENbHUX XAPAKMEPUCIMUK, SKI 3a1eHcams 8i0
bacamvox haxmopie, w0 3MIHIOIOMbCS 8 NPOCMOPT MA 8 YACL.

OOHiew 3 Haubitbwi NONYIAPHUX [HMESPANbHUX eMRIPUYHUX XAPAKMEPUCMUK, WO
sUpadNCarOmy 2IOPasLivHULl ONIp BIOKPUMUM NOMOKAM Y PYCIAX DIYOK, € KoeQiyicHm
wopcemrxocmi  ILle3i C. Ha Oawuti momenm iCHYye 6enuxa KilbKiCmb eMnipuyHux I
HanigeMnipuyHuUx opmyn i sanedxcHocmetl 015 po3paxyHky koegiyienma I[llesi. Oonak,
HEe36a4CAI0YU HA BENUKY KITbKICINbL eMNIPUYHUX I HANIBeMIIPUYHUX hOpMYA § 3anedcHocmel
0151 11020 PO3PAXYHKY, 10€eaNbH020 CROCOOY YU Memody 0/ 0OHO3HAUHO20 GU3HAYEHHS Yicl
emnipuunoi xapaxmepucmuku e icnye. 3 00H020 OOKY, wob eubpamu 8i0n08ioHy Gopmyny
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onst pospaxyuky koegpiyichma Illesi, mu nosunni npuiimamu 00 yéazu NPaKmMudHUll 00C6Iio,
3ACHOBAHULL HA KOMNJIEKCHOMY AHALI3I 6APIAHMIE, PO32N0amu Pi3HI eMRIPUYHI DIGHAHHS, SKI
anbmMepHAMUEHO BUKOPUCIMOBYIOMbCS 01 NPEOCMABIeH s 2i0pAsIiuHO20 ONOpY GIOKPUMUM
nomokam. 3 iHuo2o 60Ky, Cymmegy poib Modice idicpasamu no6HOMAa ma KOMNIeKCHICHb
NOALOBUX O0CHIONCEHb YUCTIeHHUX 2iopomopghonoziunux gakmopie i napamempis, wo
Xapaxkmepu3syloms pi3Hi acnekmu 2iopasniuHo2o onopy eiokpumum nomoxam. 3o0kpema,
oyinka mounocmi oouucnenns koegiyicuma Lllesi 3a nonvosumu OaHUMU, HE38AXHCAIOUU HA
Memoou ma Gopmynu, ceiouums npo me, Wo MOYHICMb NOALOGUX BUMIPIOGAHb NAPAMEMPIE,
Wo 6x00Amb 00 00paHUx OopMyn, 3HAUHOIO MIpOIO BU3HAYAE GIOHOCHY NOXUOKY MAKUX
PO3PAXYHKIE.

YV yitt cmammi pozensioaemocs npodrema ynopsiokyeanHs OaHUX ma po3pooKu 3a2aibHUX
npasun QopmysanHa HAGUANLHUX | Mecosux 6UOIpOK OAHUX OAsl HAGUAHMA WIMYUHUX
HeUpOHHUX Mepedic, AKI po3poOAAIOMbCs 0as 0buucienns koegiyienma Llesi 3 ypaxyeanusam
napamempuyHoi He8UHAYeHOCMI OAHUX NPO 2i0poMOphON02IuHT hakmopu ma napamempu,
Wo xapaxmepuzyroms 2i0pagniuHull onip y pyciax pivok. 3aoaua supiuyemuscs Ha npuKiaoi
WMYYHOI HEeUpPOHHOI Mepedci NpAMO20 NOWUPEHHS 3 OOHUM NPUXOBAHUM UWAPOM I
CUSMONOOIOHOI TO2ICIUYHOI DYHKYIEID aKMUBayii.

Knrwuosi cnosa: wmyuni Heuponui mepedci; Koegiyicnm wopcmkocmi Lllesi;
nio2omosKka 0anux, 2i0pagiukull Onip y pyciax pidox; napamempuyHd HegUHAYEeHICMb
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