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DATA ARRANGEMENTS TO TRAIN AN ARTIFICIAL NEURAL 

NETWORK WITHIN SOLVING THE TASKS FOR CALCULATING 

THE CHÉZY ROUGHNESS COEFFICIENT UNDER UNCERTAINTY 

OF PARAMETERS DETERMINING THE HYDRAULIC 

RESISTANCE TO FLOW IN RIVER CHANNELS 

 
Abstract. Hydraulic calculations and mathematical modelling of open flows in river 

channels keep still being among the most topical hydro-engineering today’s 

problems in terms of practice. While solving them, independently on the research 

topic and purpose, and methods used, a number of simplifications and assumptions 

are usually accepted and applied. Moreover, there is a range of methodological, 

structural, and parametric uncertainties, which to be overcome require complex 

empirical pre-researches. First of all, these uncertainties relate to assessing 

hydraulic resistances and establishing numerical characteristics of them, which 

depend on many factors varying spatially and temporally. 

One of the most frequently used integral empirical characteristics expressing the 

hydraulic resistance to open flows in river channels is the Chézy roughness 

coefficient C. However, despite a large number of empirical and semi-empirical 

formulas and dependencies to calculate the Chézy coefficient, there is no ideal way 

or method to determine this empirical characteristic unambiguously. On the one hand, 

while opting for an appropriate formula to calculate the Chézy coefficient, we need 

to take into account practical experience based on comprehensive options analysis 

considering different empirical equations used alternatively to represent the 

hydraulic resistance to open flows. On the other hand, the fullness and 

comprehensiveness of field researches of numerous hydro-morphological factors 

and parameters characterizing various aspects of the hydraulic resistance to open 

flows can also have an essential role. In particular, the accuracy assessment of the 

Chézy coefficient computing based on field data, despite methods and formulas, 

indicates that the accuracy of field measurements of the parameters included in 

selected formulas largely determines the relative error of such calculations. 

This paper deals with the problem of data arrangements and the development of 

general rules for the formation of training and test samples of data to train artificial 

neural networks being elaborated to compute the Chézy coefficient taking into 

account the parametric uncertainty of data on the hydro-morphological factors and 

parameters characterizing the hydraulic resistance in river channels. The problem 

is solved on the example of an artificial neural network of direct propagation with 

one hidden layer and a sigmoid logistic activation function.    
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1. Introduction 

 

The concept of hydraulic resistance is widely used to solve numerous practical 

hydro-engineering and fluid mechanics tasks, in particular, those relating to open 

flows in river channels [1-4]. Among them, first of all, we need to note common 

hydraulic calculations of the river channels’ capacity and the position of the free 

water surface of open streams [1, 3, 4]. The notion of hydraulic resistance is also 

used while solving the special tasks of mathematical modelling of streams with free 

surface in canals and river channels within one (1D) and two-dimensional (2D) flow 

models of shallow water (non-linear de Saint-Venant equations) describing unsteady 

open channel flow [5-10]. For instance, the above-mentioned models are applied in 

numerous modern computational modelling systems, such as the HEC-RAS River 

Analysis System supporting steady and unsteady flow water surface profile 

calculations, sediment transport computations, and water quality analyses, etc. [11]. 

The shallow water models keep successfully competing with more advanced today’s 

hydrodynamic solutions based on the Navier-Stokes equations of the real fluid 

motion and Reynolds’ averaged equations of turbulent water flow, which describe 

the behaviour of an unsteady three-dimensional flow. Applying them, we avoid 

assumptions and simplifications that are connected with the hydraulic resistance 

concept usage. However, results obtained from traditional hydraulic calculations and 

flow modelling due to 1D and 2D shallow water models may be used as boundary 

conditions for the next computations based on the Reynolds and Navier-Stokes 

equations [12-14]. Such an approach can essentially simplify solutions to complex 

real-world case study tasks of hydrodynamics [13]. Some additional examples of 

recent pieces of literature relating to the use of 1D and 2D flow models of shallow 

water are also highlighted in [15-18].  

Relying on hydraulic resistance concept when performing traditional hydraulic 

calculations and mathematical modelling of open flows in river channels, we keep 

repeatedly dealing with the complex challenge relating to determining numerical 

characteristics of hydraulic resistance in spite of this problem has long been 

considered by hydraulic scientists and engineers. Regarding practice, it has still been 

discussed even in terms of a friction factor (namely, the Darcy-Weisbach friction 

factor) [19-23] or a roughness coefficient [24-33] usage as appropriate hydraulic 

resistance numerical characteristics. In the last case, in term of a roughness 

coefficient, there are also two options, namely, which of them, the Manning 

roughness coefficient or the Chézy roughness coefficient might fit better. 

Admittedly, there are three practically equivalent empirical equations (or 

appropriate empirical models) linking mean flow velocity V  to the hydraulic 

resistance numerical characteristics. They are the Chézy, Manning (Gauckler- 

Manning or Gauckler-Manning-Strickler), and Darcy-Weisbach equations, which 

may be summarized as [1, 3, 4, 30-33]: 
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where C  is the Chézy roughness coefficient (m1/2/s), n  is the Manning (Gauckler- 

Manning) roughness coefficient  (s/m1/3), and   is the Darcy-Weisbach friction 

factor; AQV /=  is the depth-averaged or cross-sectional averaged velocity (m/s), 
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Q  is the water discharge (m3/s), hBA =  is the cross-sectional area of the flow (m2), 

B  is the average flow width (m), h  is the average flow depth (m), PAR /=  is the 

hydraulic radius (m), P  is the wetted perimeter (m), fS  is the energy grade line 

slope (or the water surface slope); g  is the gravitational acceleration (m/s2). 

Usually, the Chézy roughness coefficient C  and the Manning roughness 

coefficient n  are used in calculating the averaged velocity of open flows; the Darcy-

Weisbach friction factor   is more common in calculating the averaged velocity of 

water movement in pipelines [1, 3, 4]. However, there are no formal restrictions on 

the use of one or another numerical characteristic of hydraulic resistance, 

independently on whether it is an open flow or a water movement in a pipeline. The 

Darcy-Weisbach formulation of hydraulic resistance is used for open flows either  

[6, 9, 19-23, 26]. 

Formally, if we take into account the equivalence of equations (1) the following 

simple relationships between the roughness coefficients C , n , and the friction factor 

  may be established:  

the Chézy roughness coefficient C  will relate to the Darcy-Weisbach friction 

factor   as [3, 4, 33]: 
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the Gauckler-Manning roughness coefficient n  will relate to the Darcy-Weisbach 

friction factor   as [15, 19, 33]: 
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and, eventually, the Chézy roughness coefficient C  will relate to the Manning 

(Gauckler-Manning) roughness coefficient n  as: 
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Practice shows, it does not matter what the kind of characteristic of the hydraulic 

resistance to open flow in river channels we use, whether it is the friction factor   

or one of the two roughness coefficients, either the roughness coefficient C  or n . 

More important is how fully it can characterize the hydraulic resistance in a real-

world case study, as well as how accurately we can calculate numerical values of the 

appropriate characteristic relating to this case study. 

It should be noted that historically the first empirical equation linking mean flow 

velocity V  to the hydraulic resistance was the Chézy formula, which was obtained 

by the famous French hydraulic engineer Antoine de Chézy in 1775. It concerned 

the velocity of pipe flows, but in the modified form fSRCV =  Chézy proposed 

to use this dependence for open channel flows as well. In general, Chézy’s equation 
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can be considered as the most generalized empirical model in open-channel 

hydraulics [1, 3, 4]. We tried showing it in Fig. 1.  

 

 
 

Fig. 1. Flow-chart to explain relationships between the Chézy, Gauckler-Manning, and 

Darcy-Weisbach equations in the context of empirical models of the hydraulic resistance to 

open flows in river channels 
 

The next empirical equation was the Darcy-Weisbach formula. It was first 

proposed by Julius Weisbach in 1845 and relates the head loss h  due to friction 

along a given length L  of pipe with diameter D  to the average velocity V  of the 

fluid flow for an incompressible fluid as [1, 3, 4, 23, 34]: 
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where the dimensionless friction factor   is regarded as a function of relative 

roughness and the Reynolds number (Re) characterizing flow regime.  

At present, in hydraulics, there seems to be no formula more accurate or 

universally applicable than the Darcy-Weisbach equation (5) supplemented by the 

Moody diagram or Colebrook equation [34]. Therefore, a lot of modern formulas 

and dependencies proposed to calculate the Chézy resistance coefficient are derived 

from the relationship (2), which links the Chézy coefficient with Darcy-Weisbach’s 

friction factor [19, 20, 23, 33]. The latter one, in turn, is also determined due to 

various empirical formulas [20, 22, 28, 29, 35]. 

The third, Gauckler-Manning’s formula was first presented by the French 

engineer Philippe Gauckler in 1867 and later re-developed by the Irish engineer 

Robert Manning in 1890 [1, 3, 4]. This equation can be obtained by use of 

dimensional analysis. Moreover, in the 2000s the Gauckler-Manning formula was 

derived theoretically using the phenomenological theory of turbulence [36, 37]. 

The Gauckler-Manning formula is not so universal one as the Chézy and Darcy-

Weisbach equations. It can only be applied to streams that have a free surface, such 

as an open channel, etc. This formula can be considered as a kind of approximation 

of the Chézy formula, namely, as a partial case of Chézy’s equation, when the Chézy 
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coefficient values relate to the Gauckler-Manning roughness coefficient n  values 

according to the relationship (4). In addition, in contrast to the Darcy-Weisbach 

friction factor  , the Gauckler-Manning roughness coefficient n  does not depend 

on the Reynolds number and flow regime, which needs being taken into account 

while analysing hydraulic resistance. 

To sum, in term of quantitative presentation of the hydraulic resistance to open 

flows in river channels, the Chézy roughness coefficient C  can be thought to be the 

most complete empiric numerical characteristic compared with the Darcy-Weisbach 

friction factor   and Gauckler-Manning roughness coefficient n . This is because 

natural watercourses like rivers are characterized by a significant variety of hydro-

morphology conditions changing in space and time. Usually, the hydro-

morphological changes occur constantly, although stochastically, seasonally, and 

regularly. Sometimes, they occur sporadically on large scales. The hydraulic 

resistance to open currents in river channels can depend on manifold elements of 

roughness such as bottom ridges, dunes, and riffles, turns and bends of a channel, 

heterogeneity of size and shape of a river channel along its length, including 

suspended sediments and bottom deposits, vegetation, ice, and others. In some parts 

of a river, at local scales, essential hydro-morphological changes can occur due to 

compressions of river channels and floodplains because of temporary formations, 

such as ice gorges, rubbish of logging, recent alluvial deposits, etc. As a result, 

similar water levels in rivers can be observed at different water discharges, and vice 

versa [38]. Human activity can also change dramatically the hydraulic resistance 

within a river channel and within its floodplain. Herewith, errors, oversights, and 

flaws in determining the hydraulic resistance, especially when it comes to 

forecasting flood danger, can result in catastrophic consequences (Fig. 2).  

 

  
 

The Halych town inundation 

 

A flooded solar power plant 

 
Fig. 2. Consequences of the June flood of 2020 on the Dniester River near the Halych town 

(from www.pravda.com.ua) 

 

Thereby, the comprehensive pre-studies relating to estimation of the hydraulic 

resistances in river channels can be thought an urgent need. In particular, the current 

comprehensive research of integral empirical numerical characteristics of the 

hydraulic resistances would open up significant opportunities to prompt flood risk 

management on rivers. Considering the variety of hydro-morphology and hydrology 

of rivers, the Chézy roughness coefficient C  seems the fittest numerical 

characteristic to present the hydraulic resistance to open flows in river channels 

comparing with other integral empirical characteristics, namely, the Darcy-Weisbach 
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friction factor   and Gauckler-Manning roughness coefficient n . The Chézy 

coefficient seems to be the most holistic and dynamic numerical empirical 

characteristic comparing with others. The Chézy coefficient enables to control more 

factors and parameters determining the hydraulic resistance to open flows in river 

channels. Using it, we can take into account features of individual river sections and 

their hydraulic regimes. Eventually, the friction factor   and roughness coefficient 

n  are often included to formulas and dependencies to calculate the Chézy roughness 

coefficient C  just as needed components. 

 

2. Generalization of the problem. The research aim and objectives 

Currently, there are a lot of different empirical and semi-empirical formulas and 

dependencies in order to calculate the Chézy roughness coefficient values within 

solving real-world tasks of hydro-engineering calculations and mathematical 

modelling of open flows in river channels. In the previous study [33], we examined 

and systematised some well-known of those presented in the literature on open-

channel hydraulics, in reference books, tutorials, manuals, and articles highlighting 

the results of original research on analyzing the hydraulic resistance to flow in open 

channels. Moreover, numerous publications on mathematical modelling of uniform 

and non-uniform water flow within 1D and 2D flow models of shallow water were 

reviewed. In total, we gathered 43 empirical dependencies to compute the Chézy 

coefficient values, as well as 13 empirical dependencies that can be used to calculate 

the Gauckler-Manning roughness coefficient values. Based on these dependencies, 

near 250 empirical equations can be compiled to compute the Chézy coefficient 

values taking into account hydro-morphology peculiarities of river channels, various 

flow regimes, specific application limits of the formulas, etc. 

We divided all examined empirical formulas to compute the Chézy coefficient 

into five groups [33]. The four groups are represented with explicit dependencies, 

which allow calculating the Chézy coefficient values directly due to values of the 

parameters included in those formulas. The fifth group consists of implicit formulas, 

which need applying a trial-and-error procedure (iterative calculation). 

The first group of explicit formulas, those we analysed and systemised [33], 

consists of thirteen dependencies the Chézy coefficient C  on the Gauckler-Manning 

roughness coefficient n  and the hydraulic radius R : 

 

( )RnfC ,= ,                                                   (6) 

 

where the Gauckler-Manning roughness coefficient n  characterises the roughness 

of the banks and bottom of river channels and floodplains; the roughness coefficient 

n  values can be obtained in different ways, in particular, due to selecting them from 

published in the literature on open-channel hydraulics n -value tables [1, 3, 4, 24, 25], 

or using special empirical formulas; some of them (thirteen dependences) we gave 

in [33]. 

Provided that the average flow width hB   and hR  , instead of the hydraulic 

radius R , the dependencies (6) may include the average flow depth h : ( )hnfC ,= . 

Some dependencies entering the group (6) may also include the water surface slope 

fS  as an additional parameter. 
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Among the formulas of the type of (6) used to calculate the Chézy roughness 

coefficient values we have to mention the well-known and frequently cited in 

literature pieces the Manning, Guanguillet-Kutter, Forchheimer, and Pavlovskii 

formulas [1, 3, 4, 29, 33]. These formulas are now the most common to compute the 

Chézy coefficient C  in various applications. They can be applied for both mountain 

and plain rivers, both small and medium or large rivers, rivers with earthen or 

indelible channels. Most of them are considered to be acceptable when values of the 

Gauckler-Manning roughness coefficient n  range from 0.011 (for example, these 

are closed conduits flowing partly full uncoated or concrete culvert with bends, 

connections, and some debris, lined or built-up channels with a smooth concrete 

trowel finish, etc. [1]) to 0.04 (including excavated or dredged and not maintained 

channels with a clean bottom and brush on the side, as well as natural plain streams, 

mostly clean, but with some weeds and stones, including floodplains with light brush 

and trees in summer, and mountain streams, no vegetation in channels with gravels, 

cobbles, and few boulders in their bottom [1]), and values of the hydraulic radius R  

range from 0.1 to 5.0 m [33]. Some dependencies may be used even in cases where 

the roughness coefficient n  values reach as much as 0.2 (for example, these are 

mountain rivers with extremely high resistance with channels composed of boulders 

or floodplains with trees, dense willows in summer [1]), and the hydraulic radius R  

values up to 20.0 m [33]. In turn, when estimating the roughness coefficient values, 

if necessary, it may be taken into account river channel geometry features including 

meandering and cross-section shape; water-surface profile; roughness because of 

friction within river bed and due to bank sediments, debris and sediment transport; 

roughness attributable to vegetation, ice cover, natural and artificial obstructions, 

and other flow-retarding factors in channels and floodplains. 

The second group of explicit formulas, those we defined and systemised, consists 

of fourteen dependencies in which the Chézy roughness coefficient values are 

determined based on the relationship (2) between the Chézy coefficient C  and the 

Darcy-Weisbach friction factor  . 

In general, there can be two sorts of roughness influencing the Darcy-Weisbach 

friction factor   as the integral characteristic of hydraulic resistance to flows in river 

channels [33]. The first sort of roughness in terms of the hydraulic resistance to flows 

in river channels relates to the micro-roughness characterised by the height of 

protrusions of roughness   depending on the size of the bottom fractions of 

sediments. With taking into account this sort of roughness, the Chézy roughness 

coefficient C  is established, which is determined as a function of the height of 

protrusions of roughness   and hydraulic radius R : 

 

( )RfC ,= .                                                  (7) 

 

In particular, among the formulas of the type of (7) used to calculate the Chézy 

roughness coefficient C  values it should be noted the Strickler, Colebrook-White 

and Williamson formulas [19, 20, 23, 28, 33]. The formulas of the type of (7) are 

usually used to compute the Chézy roughness coefficient for mountain and foothill, 

mostly small and medium-sized rivers, which have practically non-erosion gravel-

pebble, pebble-boulder channels. 



~ 66 ~ 
 

ISSN: 2411-4049.  Екологічна безпека та природокористування, № 2 (42), 2022 

The second sort of roughness in terms of the hydraulic resistance to flows in river 

channels relates to the macro-roughness characterized by the size (the height rh  and 

length rl ) of the bottom ridges (riffles, dunes, etc.) and other similar channel 

formations. With taking into account this sort of roughness, the Chézy roughness 

coefficient rC  is established, which is determined as a function of the height rh and 

length rl  of the bottom ridges, and hydraulic radius R : 

 

( )RlhfC rrr ,,= .                                                 (8) 

 

Among the formulas of the type of (8) used to calculate the coefficient rC  values 

it can be noted the Knoroz, Snischenko, and Sterenlicht-Polad-zade formulas  

[33, 39-42]. However, the formulas of the type of (8) have been developing mainly 

for large canals and plain rivers, where there are conditions to exist of the bottom 

ridge phase of sediment movement. 

In exceptional cases, if we need to take into account the micro- and macro-

roughness simultaneously the Chézy coefficient can be written as [33, 39, 40, 42]: 

 

222

111

rCCC
+=



.                                                (9) 

 

Instead of the hydraulic radius R , the dependencies (7), (8) may include the 

average flow depth h : ( )hfC ,= , ( )hlhfC rrr ,,= . The height of protrusions of 

the roughness   of a channel is usually equated to the average diameter d  of soil 

particles making up the bottom and banks of a river channel:   = d  [33]. It should 

also be noted that formulas of the types of (7) and (8) do not include the hydraulic 

slope fS ; however, some formulas of the type of (7) include the Reynolds number 

Re .  

In general, the dependencies of the type of (7) and especially ones of (8) do not 

have wide applications in practice. However, they can be successfully used for 

estimating hydraulic resistance within gauged river sections, where detailed field 

research is conducted on a regular basis [33, 45]. 

The third group of explicit formulas, those we singled out and analysed [33], 

involves six special dependencies to compute the Chézy coefficient values taking 

into account the effect of the water surface slope fS  and hydraulic radius R : 

 

( )RSfC f ,= .                                                (10) 

 

Practice shows that it is especially important to pay attention to the hydraulic 

slope while assessing the hydraulic resistance characteristics in the case of unstable 

river channels and variability of floodplain morphological characteristics. Usually, 

the hydraulic resistance to flow in open river channels keeps changing due to the 

variability of seasonal hydraulic and hydro-morphological conditions. Sometimes, 

these changes occur unpredictably. At the same time, the purposeful monitoring of 

the water surface slope enables taking into account the influence of various hydro-
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morphological factors on hydraulic resistance within river sections where conditions 

change dynamically. Altogether, the hydraulic slope may be considered a kind of an 

indirect integral hydraulic resistance characteristic. In particular, the main feature of 

formulas of the type of (10) is that they contain neither the Gauckler-Manning 

roughness coefficient n , nor micro- and macro-roughness parameters used to define 

the Darcy-Weisbach friction factor  . On the contrary, the water surface slope fS  

is often used as one of the key parameters in some empirical formulas to calculate 

the roughness coefficient n  (Bray’s, Jarrett’s, Sauer’s formulas [25, 33]).   

Among the formulas of the type of (10) used to compute the Chézy coefficient 

values it should be noted Matachievitch’s, Winkel’s, and Altshuhl-U-Van Thein’s 

formulas [33, 44]. As well, provided that the average flow width hB   and hR  , 

instead of the hydraulic radius R , the dependencies (10) may include the average 

flow depth h : ( )hSfC f ,= . 

Currently, formulas of the type of (10) do not have wide applications in practice. 

Their usage scope is limited to partial cases, mostly such as earthen canals and 

canalized rivers, small and medium, foothill and plain rivers with relatively stable 

self-regulating channels. There are also some restrictions relating to values of the 

hydraulic slope fS , hydraulic radius R  (or average flow depth h ), and average 

flow width B . However, we consider using the dependencies of the type of (10) as 

a promising approach to computing the Chézy coefficient in gauged rivers, including 

monitored rivers by means of modern GNSS technology applications. One of key 

advantages of the approach seems that the accuracy of the water surface slope 

determination depends mostly on the accuracy of water level measurements being 

carried out instrumentally and, usually, with relatively high accuracy [33]. This can 

minimise the influence of human errors while monitoring the water surface slope. 

Accordingly, being the simplest element in terms of direct measurements of the river 

flow [33], the ongoing water level measurements can provide a quite reliable 

underpin to compute the Chézy coefficient properly with using dependencies of the 

type of (10).  

The fourth group of explicit formulas we generalized as: 

 

( )RBfC ,= ,                                                 (11)    

 

where R  is the hydraulic radius, B  is the average flow width.  

These are formulas, where the ratio ( )RB /  is used to take into account the shape 

of a river channel cross-section in terms of determining the hydraulic resistance to 

open flow [39, 42]. Therefore, these formulas can also be summarised as [33]: 

( )RBfC /= . We found only four similar formulas that can be attributed to the 

group (11). Often, in practical applications, a uniform open flow with an arbitrary 

cross-sectional shape is reduced to a flat flow with the average flow depth h . Then, 

instead of the hydraulic radius R , the dependencies (11) may include the average 

flow depth h : ( )hBfC ,= . 

Among the implicit formulas, those we analysed and systemised [33], the most 

common are formulas of the type of ( ) = CRfC ,, . In particular, these are the 

Colebrook-White [23, 46], Thijse [47], and Powell [1, 29] formulas. Being derived 
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from the Darcy-Weisbach friction factor  , these dependencies involve also the 

Reynolds number Re  as an additional parameter. Among the implicit formulas, 

where the Gauckler-Manning roughness coefficient n  and hydraulic radius R  are 

used, we might recommend the Agroskin-Zheleznyakov equation [39]. It is a 

formula of the type of ( )CRnfC ,,= . Moreover, provided that the average flow 

width hB   and hR  , instead of the hydraulic radius R , the average flow depth 

h  may also be used: ( ) = ChfC ,, , ( )ChnfC ,,= .  

Below, Fig. 3 shows the results of our examination of relationships between the 

Chézy roughness coefficient C  and main parameters needed to compute it. 

 

 
Parameters: n  is the Gauckler-Manning roughness coefficient; fS  is the water 

surface slope; R  is the hydraulic radius; B  is the average flow width; h  is the 

average flow depth;   is the height of protrusions of roughness; rh  is the height and 

rl  is the length of the bottom ridges (riffles, etc.); Re is the Reynolds number  

 

Fig. 3. Flow-chart showing the relationships between the Chézy roughness coefficient C  

and main hydro-morphological parameters needed to compute it 

 

According to Fig. 3, the different parameters needed to compute the Chézy 

roughness coefficient may be divided into two characteristic groups. The first group 

consists of special parameters presented in formulas of a certain type. These аre, for 

example, the Gauckler-Manning roughness coefficient n , height of protrusions of 

roughness  , water surface slope fS , and the average flow width B . In the flow-

chart (Fig. 3), the circles highlight the key parameters presented in all formulas of a 

certain type, the pentagons – additional ones, which are only used in some formulas 

of a certain type. The second group includes the hydraulic radius R  or, provided that 
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hB  , the average flow depth h . One of these parameters is required in all 

formulas to compute the Chézy coefficient, regardless of their type. 

While choosing an appropriate formula for calculating the Chézy roughness 

coefficient, we should take into account the availability and quality of information 

about all parameters and focus on the formulas with special parameters whose values 

are less questionable. Further, depending on flow conditions and factors affecting 

hydraulic resistance in the river channel section under study, we can choose the best 

formula of a certain type. If necessary, we can also focus on more detailed research 

on a special parameter fitting most to solve the task.  

In general, as practice shows, regardless of area research, methods and tasks, in 

modelling and making decisions under data uncertainty, it is important to consider 

all available information [7, 48-53]. This allows you to implement a comprehensive 

and holistic approach to solving the problem. Taking into account all available 

information can be especially useful at the stage of preliminary research, when 

priorities have not been yet sufficiently identified. Engaging all available 

information can be useful in data analysis and their arrangements, as well as in 

modelling, computing of model parameters, and in decision-making processes, 

including final decision-making stages. 

Supporting the comprehensive and holistic approach to hydraulic resistance 

research, we propose performing the Chézy coefficient calculations using an 

artificial neural network (ANN). Among the priority tasks needed preliminary 

solving to achieve that we consider the problem of correct data arrangements to train 

an ANN. In this research, we tried solving the problem of correct data arrangements 

to train ANNs being elaborated to calculate the Chézy coefficient on the example of 

an ANN of direct propagation with one hidden layer and a sigmoid logistic activation 

function. The main purpose of the study was to develop general rules for the 

formation of training and test data samples when creating ANNs to compute the 

Chézy coefficient under parametric uncertainty. To achieve the aim of the study, the 

following main objectives were set and carried out: (1) generalization of the problem 

relating to computing the Chézy roughness coefficient, including defining and 

studying of the subject area; (2) data processing and analysis relating to key 

parameters defining the Chézy roughness coefficient values; (3) modelling of the 

ANN to compute the Chézy roughness coefficient, opting of the ANN components 

and its structure; (4) supervised learning (training and testing) of the proposed ANN 

with processing examples based on using sets of paired inputs and desired outputs 

learning; (5) analysis of obtained results with detecting challenges and difficulties 

relating to computing the Chézy roughness coefficient values by means of the 

proposed ANN, and outlining ways of their overcoming. 

 

3. Materials, methods, main assumptions, and constrictions of the study 

 

This study keeps a continuation of our previous work [33]. There, on the basis of 

different pieces of literature, we reviewed, analysed, and systematised a wide set of 

the well-known and frequently cited empirical and semi-empirical formulas and 

dependencies, which might be used to compute the Chézy roughness coefficient in 

cases of open river channels taking into account application limits in term of hydro-

morphological conditions. In order to clarify some of the problematic issues related 

to the use of the reviewed formulas, we have more carefully revised pieces of 

classical literature on open channel hydraulics [1, 3, 4], reference books, tutorials, 
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and manuals [24, 25, 39-42], articles highlighting the results of original research on 

estimating hydraulic resistance [2, 19-23, 26, 27, 30-32, 34, 36, 37, 43, 44], including 

materials of articles devoted to the peculiarities of computing the Chézy roughness 

coefficient values [28, 29, 35, 46, 47], as well as publications on mathematical 

modelling of uniform and non-uniform water flow in open channels [7-14, 16-18]. 

In total, we analysed more than 40 different formulas that can be used while the 

Chézy roughness coefficient calculating, and revealed the specifics of the use of 

different formulas depending on the available data, limitations and conditions of 

their practical applications. In addition, there was studied the problem of the origin, 

propagation, estimation, and overcoming of the uncertainty of the parameters 

included in these formulas and hydraulic models [48, 49, 51, 53, 54]. In particular, 

this research allowed clarifying the tasks of defining and studying the subject area 

(1), and data processing and analysis relating to key parameters defining the Chézy 

roughness coefficient values (2). 

When researching, we used different methods within the holistic approach to the 

problem under study [55-59]: historical method; method of dialectical cognition and 

generalised scientific methods of theoretical and empirical research; heuristic 

methods; methods of analysis and synthesis; methods of expert evaluation and 

comparison; methods of formalization and modelling. Moreover, we used modern 

methods of intelligent data analysis [60, 61], methods of decision making under 

uncertainty [7, 49, 50, 52, 62], as well as methods and models of artificial 

intelligence, including ones relating to development and application of ANNs  to 

solve various application problems [63-72]. 

This article is devoted to solving the problem of correct data arrangements and 

the development of general rules for the formation of training and test samples of 

data to train ANNs being planned to be elaborated to compute the Chézy roughness 

coefficient taking into account the parametric uncertainty of data on the hydro-

morphological factors and parameters characterizing the hydraulic resistance in open 

river channels. The problem is solved on the example of an ANN of direct 

propagation with one hidden layer and a sigmoid logistic activation function. The 

training of the ANN and its testing is planned to be carried out taking into account 

the following hydro-morphological parameters: the Gauckler-Manning roughness 

coefficient n  and water surface slope fS ; the average flow width B  and depth h ; 

the height of protrusions of roughness   and hydraulic radius R . It is assumed that 

multicollinearity between the parameters n , fS , B ,  , h , and R  is absent or can 

be neglected. Taking into account the relationships between the Chézy coefficient 

and the defining parameters (Fig. 3), samples of input variables  ( )21, xx  are 

prepared. Using them, the ANN, according to the algorithm shown below in Fig. 4, 

calculates the Chézy coefficient ( )21, xxfC =  as a dependent variable, where, 

 BSnx f ,,,1   and  Rhx ,2   are considered as independent variables. As a 

result, the ANN of direct propagation with one hidden layer and a sigmoid logistic 

activation function performs approximation of continuous ( )21, xxfC =  functions. 

The training of the ANN is carried out on the learning samples ( )Cxx ,, 21  using the 

method of inverse error propagation [65]. 
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Fig. 4. Flow-chart showing the algorithm of computing the Chézy roughness coefficient C

values by means of the ANN under study 

 

To train and test the ANN, a limited amount of field data on hydro-morphological 

characteristics was used. They related to two channel sections on the Dnieper River 

(within the city of Kyiv and downstream of Kyiv), the Desna River section near 

Chernihiv, and the Pripyat River section near the town of Turiv. These areas are 

characterized by a straight earthen channel with a simple cross-sectional shape and 

calm current (the Froude number, Fr  1). Training and testing the neural network 

was carried out within the following limits of change of hydro-morphological 

parameters: the water discharge Q  = 48.8 ÷ 3665.0 m3/s; the average flow velocity 

AQV /=  = 0.336 ÷ 0.968 m/s, where A  is the cross-sectional area of the flow (m2); 

the water surface slope fS  = 0.000036 ÷ 0.00016; the average flow depth h  = 1.0 ÷ 

6.2 m; the average flow width B  = 122.0 ÷ 611.0 m; the Gauckler-Manning roughness 

coefficient n  = 0.027 ÷ 0.045; the Chézy roughness coefficient C  = 27.0 ÷ 48.1 

(Table 1). Field data regarding these hydro-morphological parameters were taken 

from the Hydrological Yearbooks of the Central Geophysical Observatory named 

after Boris Sreznevsky [73]. 

 

Table 1 – Hydro-morphological data used in the ANN training and testing  
 

Rivers, channel sections 
Q  

(m3/s) 

A  
(m2) 

B  
(m) 

h  

(m) 
fS  103 

n
(s/m1/3) 

C

(m1/2/s) 

Dnieper, Kyiv (training) 

545.1 1125 375 3.0 0.045 0.029 41.8 

1433 1768 393 4.5 0.067 0.028 46.7 

1842 1988 398 5.0 0.074 0.027 48.1 

Dnieper, Kyiv (testing) 
1082 1551 388 4.0 0.060 0.028 45.2 

787.2 1336 382 3.5 0.052 0.028 43.6 
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Rivers, channel sections 
Q  

(m3/s) 

A  
(m2) 

B  
(m) 

h  

(m) 
fS  103 

n
(s/m1/3) 

C

(m1/2/s) 

Dnieper, downstream of 

Kyiv (training) 

657.4 1956 575 3.4 0.046 0.045 27.0 

1123 2403 586 4.1 0.054 0.040 31.4 

3665 3787 611 6.2 0.079 0.031 43.7 

Dnieper, downstream of 

Kyiv (testing) 

1763 2858 595 4.8 0.063 0.036 35.6 

2601 3320 604 5.5 0.071 0.033 39.7 

Desna, Chernihiv 

(training) 

188.0 501.8 125 4.0 0.036 0.041 31.1 

249.4 580 129 4.5 0.040 0.040 32.2 

403.7 742.4 135 5.5 0.046 0.039 34.2 

497.5 826.3 138 6.0 0.049 0.038 35.1 

Desna, Chernihiv (testing) 321.2 660.3 132 5.0 0.043 0.039 33.3 

Pripyat, Turiv (training) 

48.8 122 122 1.0 0.16 0.032 31.6 

89.0 195.4 130 1.5 0.128 0.033 32.9 

248.6 437.3 146 3.0 0.087 0.034 35.1 

Pripyat, Turiv (testing) 
136,3 273 136 2.0 0.109 0.033 33.8 

189.7 353.8 142 2.5 0.097 0.034 34.5 

 

In order to correctly use the actual data for training and testing the ANN, they 

were normalised. Numerical data were converted in such a way as to obtain their 

model values varying in the range between 0 and 1. In particular, for the purpose of 

normalization, the parameter B  was replaced with a ratio 1−
 hBS f [74]. Instead 

of parameters V , h , C , model characteristics V 10-2, h 10-2, C 10-2 were 

considered. Parameters fS  and n  remained unchanged. Training data samples 

consisted of normalized values of the characteristics obtained with uniform linear 

interpolation in the vicinity of the observed values of parameters. The observed 

values that were used as test examples were not included in the training samples. 

 

4. The ANN used in the study 

 

4.1. The ANN architecture   

 

Usually, a multilayer direct propagation ANN (a multilayer perceptron) with a 

nonlinear activation function to approximate continuous functions is used. Such a 

neural network is considered as a hierarchical structure in which neurons are 

structured in layers. In a fully connected ANN, each neuron in one its layer is 

connected to all neurons in its next layer. Neurons of the input layer in such networks 

transmit input signals to the first hidden layer without converting them. In hidden 

neurons, sequentially, layer by layer, there is a nonlinear conversion of signals. Each 

network neuron produces a weighted sum of its inputs, passes this value through the 

activation function and gives the output value. Signals from the last hidden layer 

arrive at the neurons of the output layer, which eventually form the ANN response 

[63-65, 67, 71, 72]. 
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In practice, it is often used one or two hidden layers [64, 65]. It is known that the 

perceptron with even one hidden layer is a very powerful computing system [63]. In 

turn, an additional hidden layer can significantly increase the complexity of 

calculations, processing time, and the risk of the ANN retraining [71, 72, 75]. 

The ANN we used to compute the Chézy roughness coefficient ( )21, xxfC = is 

a fully connected direct propagation neural network with one hidden layer. The 

network has 2 inputs, 4 neurons in its hidden layer and 1 neuron in its output layer. 

Examples of similar networks are given in [63-65, 71, 72, 75].  

Fig. 5 shows the neural network architecture as a set of such blocks: the input 

layer that receives the parameters ( )21, xx  values and transmitting them (without 

conversion) to the next layer neurons; the weight matrix  4,1,2,1,
)1(1

=== jiwW
ij

 

containing the weight values of inputs for the all hidden layer neurons; the hidden 

layer containing four neurons, each of which calculates the weighted sum 


=

=
2

1

)1(

i
ijij wxs , 4,1=j  of its inputs, conducts the sum value through the activation 

function ( )jsF , and transmits the resulting value to the next layer; the weight matrix 

 1,4,1,
)2(2

=== jiwW
ij

 containing the weight values of relationships of the each 

hidden layer neuron with the output neuron; the output layer containing one neuron 

in which the weighted sum of its inputs is calculated and the Chézy roughness 

coefficient value is determined: ( )
=

=
4

1

)2(

i
iji wsFC , 1=j . 

 

 

 
 
 
 
 
 
 
 
 
Fig. 5. Flow-chart 

showing the 

architecture of the 

ANN under study 
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The ANN uses a direct propagation network model with a linear source neuron; 

the sigmoid (logistic) activation function is applied to the neurons of the hidden layer 

[64, 65]: 

 

( )
se

sF
−+

=
1

1
,                                             (12) 

 

where the parameter   influences the steepness of the transition. 

The advantage of the function (12) is a quite convenient expression of its first 

derivative [64, 65]:   

 

( ) ( ) ( )( )sFsFsF −= 1'  ,                                        (13) 

 

that allows effectively using different algorithms for the ANN learning, where, in 

turn, parameter   (in our case study   = 1) allows amplifying weak signals and 

adjusting the learning speed of the network. 

 

4.2. The ANN algorithm to compute the Chézy roughness coefficient values  

 

According to the proposed ANN architecture (Fig. 5) and the recommendations [65], 

the following algorithm for computing the Chézy roughness coefficient C  was 

developed. It consists in gradually calculations of the outputs of all neurons 
)1(

jy  

and 
)2(

y  in the network in the direction from the first to the last layer of neurons 

performed by parameter  ( )21, xx  values and weight matrices 
1

W , 
2W ; the neuron 

of the output layer forms the result of the network work as [65]: 

 

( )jj sFy =
)1(

, 
=

=
2

1

)1(

i
ijij wxs , 4,1=j ,                             (14) 


=

=
4

1

)2()1()2(

i
iji wyy , 1=j , ( ) )2(

21, yxxC = ,                         (15) 

 

where 
)1(

jy , 4,1=j  are output values of the hidden layer neurons, ( )jsF  is the 

neuron activation function (12), ix  is an input parameter, 
)1(

ij
w  are weight 

coefficients of connections of each input layer neuron with all neurons of the hidden 

layer, 
)2(

ij
w  are weight coefficients of connections of each hidden layer neuron with 

the neuron of the output layer, 
)2(

y  is the ANN output value. 

 

4.3. The ANN training 

 

The Python object-oriented programming environment [70-72, 76] was applied to 

build and train the neuron network (Fig. 5). The ANN training was carried out by 

adjusting the weights of connections between neurons of all its layers using the 
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inverse error propagation algorithm [64, 65]. The learning factor was assumed to be 

0.01. The software implementation of the computational algorithm for learning of 

the ANN being created to predict the Chézy coefficient C  is given in [77]. 

The ANN weight coefficients were adjusted on a series of real case examples of 

the parameters ( )21, xx  values, where  BSnx f ,,,1   , and  Rhx ,2  , in such a 

way as to achieve a reduction in the error between the predicted (computed) pC  and 

observed (reference) oC  values of the Chézy coefficient C . The Chézy roughness 

coefficient reference oC  values were calculated on actual data of hydrological 

observations with the Chézy formula as: 

 

f

o
o

SRA

Q
C


= ,                                             (16) 

 

where oQ  is the observed water discharge (m3/s), A  is the cross-sectional area of 

the flow (m2), R  is the hydraulic radius: hR   as hB  , B  is the average flow 

width (m), h  is the average flow depth (m), fS  is the water surface slope. 

The initial values of the weight coefficients were set randomly, near to zero. At 

each iterative step (epoch in learning), at the ANN entrance, in turn, training 

examples were input and the output values of the neural network were computed, 

which were further compared with the reference values with error estimating. The 

network error was also calculated for the hidden layer neurons. The obtained error 

values were used to recalculate weight coefficients according to the inverse error 

propagation algorithm [64, 65, 71, 72]. Then, the transition to the next learning epoch 

was made or, when the required number of epochs was performed or the 

computational error amounted to an acceptable value the algorithm was stopped. 

The ANN learning algorithm includes the following sequence of steps 

implemented in the program code of the Python module C_ANN_training.py [77]:   

1. Initialization of the ANN parameters. 

2. Direct course of calculations. 

3. The reverse course of calculations. 

4. Checking the ANN training adequacy. 

5. Storage of the ANN learning outcomes. 

The proposed computational algorithm implements the classical approach to 

learning multilayer neural networks using the method of inverse error propagation 

[63-65, 67, 72, 78]. Herein, the number of learning epochs, the value of learning 

speed, the amount of learning error, the number of neurons in the hidden layers of 

the network, etc. are selected by the developer (expert) empirically applying a trial-

and-error procedure. Further, the ANN training results are used in predicting the 

values of the Chézy coefficient C  by means of a computer program developed on 

Python (See, the Python module C_ANN_calculating.py [77]). 

 

4.4. The ANN testing 

 

The ANN testing was carried out according to the actual data of hydro-

morphological observations (Table 1), which were not used in the network training.  
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The testing procedure consisted of a comparison of the actual (observed, gauged) 

oQ  and forecasted (predicted) pQ  water discharge values:   

 

fpp SRACQ = ,                                            (17) 

 

where pC  is the predicted (computed by means of the ANN) Chézy roughness 

coefficient value (Table 2). 

 

Table 2 – The identified (observed) and computed (predicted) Chézy coefficient C

values 
 

Rivers, channel sections 

The Chézy roughness coefficient values (m1/2/s): 

oC , calculated (identified) 

with the formula (16)  

pC , computed by 

means of the ANN 

Pripyat, Turiv 45.0308 36.8622 

Pripyat, Turiv 35.4731 36.8624 

Desna, Chernihiv 33.1753 36.8632 

Dnieper, Kyiv 33.8147 36.8623 

Dnieper, Kyiv 39.6453 36.8624 

Dnieper, downstream of Kyiv 43.6760 36.8622 

Dnieper, downstream of Kyiv 34.4313 36.8623 

 

Table 3 shows the actual (observed, gauged) and forecasted (predicted) water 

discharge values, as well as absolute and relative errors of discharge forecasts 

performed using the tested ANN. 

 

Table 3 – The actual (observed) and forecasted (predicted) water discharges 
 

Rivers, channel sections 

Discharges (m3/s) Absolute 

errors 

(m3/s) 

Relative 

errors 

(per cent) 

observed, 

oQ  

predicted, 

pQ  

Pripyat, Turiv 136.3 148.0 11.7 8.6 

Pripyat, Turiv 189.7 203.8 14.1 7.4 

Desna, Chernihiv 321.2 356.7 35.5 11.1 

Dnieper, Kyiv 787.2 664.9 122.3 15.5 

Dnieper, Kyiv 1082.0 886.3 195.7 18.1 

Dnieper, downstream of Kyiv 1763.0 1830.8 67.8 3.8 

Dnieper, downstream of Kyiv 2601.0 2419.9 181.1 7.0 

 

To assess the forecast (predictive) skill of the ANN the Nash-Sutcliffe model 

efficiency coefficient (NSE) was used [79]. At present, this criterion is widely 

applied for assessment of the predictive power of hydrological models [80].  

In our case study, the NSE coefficient was calculated as: 
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where ioQ , , ipQ ,   are observed and predicted values of water discharges for a river 

channel section i , 7,1=i ; oQ  is the mean of the observed discharges ioQ , . 

It is thought, in the situation of a perfect model with an estimation error variance 

equal to zero, the resulting Nash-Sutcliffe Efficiency equals 1 (NSE = 1). Values of 

the NSE nearer to 1, suggest a model with more predictive skill. 

In our case study the NSE = 0.9818. It can signify the forecast (predictive) skill 

of the ANN is quite high. 

Moreover, we used an application of NSE in regression procedures (i.e. when the 

total sum of squares can be partitioned into error and regression components). 

Herein, the Nash-Sutcliffe efficiency (NSEr) is considered equivalent to the 

coefficient of determination (R2). Fig. 6 shows the graphical illustration of the NSEr 

assessing. Its value confirms the high predictive skill of the ANN as well. 

 

 
 

Fig. 6. The graphical illustration of the Nash-Sutcliff model efficiency criterion NSEr 

assessment 

 

It should be noted, the NSE coefficient is sensitive to extreme values and might 

give sub-optimal results when the dataset contains large outliers. Usually, some 

subjective threshold indicating that the model can be objectively accepted or rejected 

based on the Nash-Sutcliffe model efficiency coefficient is the NSE = 0.3.   

 

5. Discussion 

 

Predicting the Chézy roughness coefficient values to present the hydraulic resistance 

to open flows in river channels is a complex challenge burdened by parametric 

uncertainty of data relating to hydro-morphological parameters. There is also the 

methodological uncertainty connecting with opting for an appropriate empirical 

Qp = 0.9446Qo + 1.634

NSEr = R² = 0.9875

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

P
re

d
ic

te
d
 d

is
ch

ar
g
es

 Q
p
(m

3
/s

)

Observed discharges Qo (m3/s)



~ 78 ~ 
 

ISSN: 2411-4049.  Екологічна безпека та природокористування, № 2 (42), 2022 

dependency among lots of different empirical and semi-empirical formulas 

involving various parameters. One of the most promising approaches to overcome 

such a kind of uncertainty might be the use of artificial neural networks (ANNs). 

However, this approach needs preliminary solving of the problem on correct data 

arrangements to train ANNs being developed, taking into account all available 

information on influential parameters determining the hydraulic resistance, 

especially in cases as the necessary data are not reliable enough, as well as 

incomplete, and ambiguous ones. 

To study the problem of applying neural networks to predict the Chézy coefficient 

values using empirical and semi-empirical formulas and dependencies taking into 

account the parametrical uncertainty of the necessary data, we examined an ANN of 

direct propagation with one hidden layer and a sigmoid logistic activation function. 

The ANN testing results indicate the prospects of using such networks in predicting 

the empirical characteristics of hydraulic resistance to open flows in river channels 

within certain limitations and applications. 

First of all, they confirm that the proposed (not overtrained) neural network of 

direct propagation with one hidden layer and a sigmoid logistic activation function 

computing the Chézy coefficient ( )21, xxfC =  in terms of input variables ( )21, xx , 

where  BSnx f ,,,1   , and  Rhx ,2  , can forecast (predict) only some averaged 

values of the C  within a chosen subject area (including rivers, channel sections, and 

variation of hydro-morphological parameter values) (Fig. 7). 

 

  
  

  
 

Fig. 7. The Chézy coefficient C  values: predicted (computed) by means of the ANN, and 

identified (calculated) with the formula (16) according to data of hydrological observations  
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Herein, according to the results of the ANN testing, the prediction relative error 

of the Chézy coefficient C values depending on the river and the channel section 

varied from 3.9 to 18.1 percent. Its average value was 10.3 percent. 

It should be noted, similar values of the prediction relative error were also 

recorded for water discharges computed by means of the ANN (See above Table 3). 

It ranged from 3.8 to 18.1 per cent, and on average was 10.2 per cent. At the same 

time, the predictive skill of the ANN checked according to the Nash-Sutcliffe model 

efficiency coefficient (NSE), occurred to be high enough (NSE = 0.9818). In general, 

this may indicate that the proposed neural network is able to predict the Chézy 

coefficient values with sufficient accuracy in terms of practice, provided the correct 

arrangements of data relating to the subject area. For example, an appropriate 

hierarchy of data arrangements may include a certain type of a river, its separate 

channel section with a certain type of fluvial-morphological process [74] and other 

hydro-morphological peculiarities of river channels [1-4], as well as acceptable 

variation of hydro-morphological parameter values including seasons, etc. There are 

also wide opportunities to advance to further improve the neural network. For 

example, it is possible to apply an ANN with more hidden layers [65-68, 75], as well 

as combinations of different activation functions for different layers of neurons, 

including genetic algorithms for approximate computing of initial values of weight 

matrices, etc. [64-72, 75]. In addition, an ensemble of neural networks can be used 

to increase the approximation accuracy of the Chézy roughness coefficient output 

values in conditions of parametric uncertainty of data relating to hydro-

morphological characteristics [65, 67], combining several separate neural networks 

into an ANN with a common architecture. 

 

Conclusions 

 

1. Developed were general rules to the arrangements and the formation of training 

and test samples of data needed to create ANNs aimed to compute the Chézy 

roughness coefficient taking into account the parametric uncertainty of findings 

regarding the hydro-morphological factors and parameters characterizing the 

hydraulic resistance to flows in river channels. The study was performed on the 

example of an ANN of direct propagation with one hidden layer and a sigmoid 

logistic activation function. The training of the ANN and its testing was carried out 

on the actual data related to several channel sections on the Dnieper River (within 

the city of Kyiv and downstream of Kyiv), the Desna River channel section near 

Chernihiv, and the Pripyat River channel section near the town of Turiv. 

2. To achieve the aim of the study, the following objectives were set and carried 

out: (1) generalization of the problem relating to computing the Chézy roughness 

coefficient, including defining and studying of the subject area; (2) data processing 

and analysis to provide correct their arrangements in computing the Chézy roughness 

coefficient values by means of ANNs; (3) modelling of an ANN to compute the 

Chézy roughness coefficient, including opting of the ANN components and its 

structure; (4) supervised learning (training and testing) of the proposed ANN by 

processing examples based on using a set of paired inputs and desired outputs 

learning; (5) analysis of obtained results with detecting challenges and difficulties 

relating to computing the Chézy roughness coefficient values by means of the 

proposed ANN and outlining ways of their overcoming. 
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3. The algorithm of calculating the Chézy coefficient C  as a dependent variable 

( )21, xxfC =  was developed, where,  BSnx f ,,,1   and  Rhx ,2   were 

considered as independent variables (predictors) representing such  parameters as the 

Gauckler-Manning roughness coefficient n , height of protrusions of roughness  , 

water surface slope fS , average flow width B , average flow depth h , and hydraulic 

radius R . The training of the ANN was carried out using the method of inverse error 

propagation. 

4. The ANN testing was performed on a comparison of the observed (gauged) 

oQ  and computed (predicted) pQ  water discharges. To assess the forecast 

(predictive) skill of the ANN, the Nash-Sutcliffe model efficiency coefficient (NSE) 

was used. We suppose the value of NSE = 0.9818 might signify the quite high 

predictive skill of the ANN. The prediction relative error of water discharges ranged 

from 3.8 to 18.1 per cent; on average, it was 10.2 per cent. 

5. According to the results of the ANN testing, the prediction relative error of the 

Chézy coefficient C  depending on rivers and channel sections varied from 3.9 to 

18.1 percent. Its average value was 10.3 percent. Thereby, it was established that the 

proposed (not overtrained) neural network of direct propagation with one hidden 

layer and a sigmoid logistic activation function computing the Chézy coefficient 

( )21, xxfC =  can forecast (predict) only some averaged values of the C  within a 

chosen subject area (including different rivers, channel sections, and variation of 

hydro-morphological parameters). It was shown that the proposed ANN is able to 

predict the Chézy coefficients with sufficient accuracy for practice, provided the 

correct arrangements of data relating to the subject area. 
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ПІДГОТОВКА ДАНИХ ДЛЯ НАВЧАННЯ ШТУЧНОЇ НЕЙРОННОЇ МЕРЕЖІ 

ПРИ РОЗВ’ЯЗАННІ ЗАДАЧ РОЗРАХУНКУ КОЕФІЦІЄНТА ШОРСТКОСТІ 

ШЕЗІ ЗА УМОВИ НЕВИЗНАЧЕНОСТІ ПАРАМЕТРІВ, ЩО ВИЗНАЧАЮТЬ 

ГІДРАВЛІЧНИЙ ОПІР ТЕЧІЇ В РУСЛАХ РІЧОК  

Анотація. Гідравлічні розрахунки та математичне моделювання відкритих течій 

у руслах річок досі залишаються одними з найактуальніших гідротехнічних задач 

сучасності з точки зору практики. При їх розв’язуванні, незалежно від теми та мети 

дослідження, використаних методів тощо, зазвичай приймається та застосовується 

ряд спрощень та припущень. Крім того, існує низка методологічних, структурних і 

параметричних невизначеностей, подолання яких вимагає складних емпіричних 

попередніх досліджень. Перш за все, ці невизначеності стосуються оцінки 

гідравлічних опорів та встановлення їх чисельних характеристик, які залежать від 

багатьох факторів, що змінюються в просторі та в часі.  

Однією з найбільш популярних інтегральних емпіричних характеристик, що 

виражають гідравлічний опір відкритим потокам у руслах річок, є коефіцієнт 

шорсткості Шезі C. На даний момент існує велика кількість емпіричних і 

напівемпіричних формул і залежностей для розрахунку коефіцієнта Шезі. Однак, 

незважаючи на велику кількість емпіричних і напівемпіричних формул і залежностей 

для його розрахунку, ідеального способу чи методу для однозначного визначення цієї 

емпіричної характеристики не існує. З одного боку, щоб вибрати відповідну формулу 
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для розрахунку коефіцієнта Шезі, ми повинні приймати до уваги практичний досвід, 

заснований на комплексному аналізі варіантів, розглядати різні емпіричні рівняння, які 

альтернативно використовуються для представлення гідравлічного опору відкритим 

потокам. З іншого боку, суттєву роль може відігравати повнота та комплексність 

польових досліджень численних гідроморфологічних факторів і параметрів, що 

характеризують різні аспекти гідравлічного опору відкритим потокам. Зокрема, 

оцінка точності обчислення коефіцієнта Шезі за польовими даними, незважаючи на 

методи та формули, свідчить про те, що точність польових вимірювань параметрів, 

що входять до обраних формул, значною мірою визначає відносну похибку таких 

розрахунків.    

У цій статті розглядається проблема упорядкування даних та розробки загальних 

правил формування навчальних і тестових вибірок даних для навчання штучних 

нейронних мереж, які розробляються для обчислення коефіцієнта Шезі з урахуванням 

параметричної невизначеності даних про гідроморфологічні фактори та параметри, 

що характеризують гідравлічний опір у руслах річок. Задача вирішується на прикладі 

штучної нейронної мережі прямого поширення з одним прихованим шаром і 

сигмоподібною логістичною функцією активації. 

Ключові слова: штучні нейронні мережі; коефіцієнт шорсткості Шезі; 

підготовка даних; гідравлічний опір у руслах річок; параметрична невизначеність 
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